精英家教网 > 初中数学 > 题目详情

【题目】如图,C为线段BD上一动点,分别过点B,DAB⊥BD,ED⊥BD,连接AC,EC.已知AB=5,DE=2,BD=12,设CD=x.

(1)用含x的代数式表示AC+CE的长;

(2)请问点C在BD上什么位置时,AC+CE的值最小?

(3)根据(2)中的规律和结论,请构图求出代数式的最小值.

【答案】(1)(2)(3)25

【解析】分析:(1)由于△ABC和△CDE都是直角三角形,故AC,CE可由勾股定理求得;
(2)若点C不在AE的连线上,根据三角形中任意两边之和>第三边知,AC+CE>AE,故当A、C、E三点共线时,AC+CE的值最小;
(3)由(1)(2)的结果可作BD=24,过点BAB⊥BD,过点DED⊥BD,使AB=4,ED=3,连接AEBD于点C,然后构造矩形AFDB,Rt△AFE,利用矩形的直角三角形的性质可求得AE的值就是代数式的最小值.

详解:

(1)

(2)当点C是AE和BD交点时,AC+CE的值最小.

∵AB∥ED,AB=5,DE=2,

又∵BC+CD=BD=12,则BC=CD,

CD+CD=12,解得CD=,BC=.

故点C在BD上距离点B的距离为,AC+CE的值最小 

(3)如图过点B作AB⊥BD过点D作EDBD,使AB=4,ED=3,DB=24,连接AE交BD于点C

AE=AC+CE=

AE的长即为代数式的最小值.

过点A作AF∥BD交ED的延长线于点F得矩形ABDF则AB=DF=4,AF=BD=24,

所以AE==25,

即AE的最小值是25.即代数式的最小值为25

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲乙两个工程队分别同时开挖两条600米长的管道,所挖管道长度(米)与挖掘时间(天)之间的关系如图所示,则下列说法中:

①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③甲队比乙队提前1天完成任务;④当时,甲乙两队所挖管道长度相同,不正确的个数有(

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】8个同样大小的小正方体搭成如图所示的几何体,请按照要求解答下列问题:

1)从正面、左面、上面观察如图所示的几何体,分别画出所看到的几何体的形状图;

2)如果在这个几何体上再摆放一个相同的小正方体,并保持这个几何体从上面看和从左面看到的形状图不变.

①添加小正方体的方法共有_________种;

②请画出两种添加小正方体后,从正面看到的几何体的形状图.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=﹣图象上的点,并且y1<0<y2<y3,则下列各式中正确的是( )

A.x1<x2<x3 B.x1<x3<x2

C.x2<x1<x3 D.x2<x3<x1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,以矩形的顶点为原点,所在直线为轴,所在直线为轴,建立平面直角坐标系,顶点为点的抛物线经过点,点.

1)写出抛物线的对称轴及点的坐标,

2)将矩形绕点顺时针旋转得到矩形.

①当点恰好落在的延长线上时,如图2,求点的坐标.

②在旋转过程中,直线与直线分别与抛物线的对称轴相交于点,点.若,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】AB在数轴上表示的数如图所示. 动点P从点A出发,沿数轴向右以每秒2个单位长度的速度运动到点B,再从点B以同样的速度运动到点A停止,设点P运动的时间为t秒,解答下列问题.

1)当t=2时,AP= 个单位长度,当t=6时,AP= 个单位长度;

2)直接写出整个运动过程中AP的长度(用含t的代数式表示)

3)当AP=6个单位长度时,求t的值;

4)当点P运动到线段AB3等分点时,t的值为 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数轴上A,B两点对应的有理数分别为10和15,点P从点A出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从原点O出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒.

(1)当0<t<5时,用含t的式子填空:

BP=_______,AQ=_______

(2)当t=2时,求PQ的值;

(3)当PQ=AB时,求t的值.

查看答案和解析>>

同步练习册答案