精英家教网 > 初中数学 > 题目详情

【题目】某校准备开春季运动会,学校要给学生买若干笔袋和笔记本作为奖品.购买2个笔袋和1个笔记本需花25元,购买3个笔袋和2个笔记本需花40.

1)求笔袋和笔记本的单价各是多少元?

2)学校准备购买笔袋和笔记本共计180个,甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案,在甲商场累计购物超过1000元后,超出1000元的部分按90%收费,在乙商场累计购物超过500元后,超出500元的部分按95%收费,经过预算此次购物超过了1000元,求学校需要至少购买多少个笔袋,才能使到甲商场购物更省钱?

【答案】1)笔袋单价为10元,笔记本单价为5元;(2)学校需要购买至少121个笔袋才能使到甲商场购买更省钱.

【解析】

1)设笔袋单价为元,笔记本单价为元,根据“购买2个笔袋和1个笔记本需花25元,购买3个笔袋和2个笔记本需花40元”可列出二元一次方程组,解方程组即可得出答案.

(2)设学校需要购买个笔袋才能使到甲商场购买更省钱;则学校需要购买个笔记本,根据“在甲商场累计购物超过1000元后,超出1000元的部分按90%收费,在乙商场累计购物超过500元后,超出500元的部分按95%收费,经过预算此次购物超过了1000元”列出一元一次不等式,解之即可得出的取值范围,进而得出的最小整数值.

1)解:设笔袋单价为元,笔记本单价为元。

解得:

答:笔袋单价为10元,笔记本单价为5.

2)设学校需要购买个笔袋才能使到甲商场购买更省钱;则学校需要购买个笔记本;

学校购买两种物品共需花费

∵经过预算此次购物超过了1000

解得:

根据题意可列式为:

解得:

为正整数

最小值为121

答;学校需要购买至少121个笔袋才能使到甲商场购买更省钱.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校为培育青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏形,如图所示,甲、乙两点分别从直径的两端点,以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程与时间满足关系,乙以的速度匀速运动,半圆的长度为

1)甲运动后的路程是多少?

2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?

3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,长方形ABCD(每个内角都是90°)的顶点的坐标分别是A0m),Bn0),(mn0),点EAD上,AEAB,点Fy轴上,OFOBBF的延长线与DA的延长线交于点MEFAB交于点N

1)试求点E的坐标(用含mn的式子表示);

2)求证:AMAN

3)若ABCD12cmBC20cm,动点PB出发,以2cm/s的速度沿BCC运动的同时,动点QC出发,以vcm/s的速度沿CDD运动,是否存在这样的v值,使得△ABP与△PQC全等?若存在,请求出v值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某物流公司承接AB两种货物运输业务,已知3月份A货物运费单价为50/吨,B货物运费单价为30/吨,共收取运费9500元;4月份由于工人工资上涨,运费单价上涨情况为:A货物运费单价增加了40%,B货物运费单价上涨到40元/吨;该物流公司4月承接的A种货物和B种货物的数量与3月份相同,4月份共收取运费13000.试求该物流公司3月份运输AB两种货物各多少吨?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,以边长为8的正方形纸片ABCD的边AB为直径作⊙O,交对角线AC于点E

1)线段AE= 

2)如图2,以点A为端点作∠DAM=30°,交CD于点M,沿AM将四边形ABCM剪掉,使RtADM绕点A逆时针旋转(如图3),设旋转角为αα150°),旋转过程中AD与⊙O交于点F

①当α=30°时,请求出线段AF的长;

②当α=60°时,求出线段AF的长;判断此时DM与⊙O的位置关系,并说明理由;

③当α=   °时,DM与⊙O相切.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形中,点是对角线上一个动点(不与点重合),连接过点,交直线于点交直线于点,连接

1)由题意易知,,观察图,请猜想另外两组全等的三角形

2)求证:四边形是平行四边形;

3)已知的面积是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2018年非洲猪瘟疫情暴发后,专家预测,2019年我市猪肉售价将逐月上涨,每千克猪肉的售价y1(元)与月份x1≤x≤12,且x为整数)之间满足一次函数关系,如下表所示.每千克猪肉的成本y2(元)与月份x1≤x≤12,且x为整数)之间满足二次函数关系,且3月份每千克猪肉的成本全年最低,为9元,如图所示.

月份x

3

4

5

6

售价y1/

12

14

16

18

1)求y1x之间的函数关系式.

2)求y2x之间的函数关系式.

3)设销售每千克猪肉所获得的利润为w(元),求wx之间的函数关系式,哪个月份销售每千克猪肉所第获得的利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《孙子算经》是唐初作为算学教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料,下卷收集了一些算术难题,鸡兔同笼便是其中一题.下卷中还有一题,记载为:今有甲乙二人,持钱各不知数.甲得乙中半,可满四十八;乙得甲太半,亦满四十八.问甲、乙二人持钱各几何?意思是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文.如果乙得到甲所有钱的,那么乙也共有钱48文.问甲、乙二人原来各有多少钱?设甲原有钱x文,乙原有钱y文,可得方程组(  )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+bx+cx轴分别于点A(﹣30),B10),交y轴正半轴于点D,抛物线顶点为C.下列结论

2ab0

a+b+c0

③当m≠1时,abam2+bm

④当ABC是等腰直角三角形时,a

⑤若D03),则抛物线的对称轴直线x=﹣1上的动点PBD两点围成的PBD周长最小值为3,其中,正确的个数为(  )

A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案