【题目】某校为培育青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏形,如图所示,甲、乙两点分别从直径的两端点、,以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程与时间满足关系,乙以的速度匀速运动,半圆的长度为.
(1)甲运动后的路程是多少?
(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?
(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?
【答案】(1)28cm;(2)3s;(3)7s
【解析】
(1)将t=4代入公式计算即可;
(2)第一次相遇即是共走半圆的长度,据此列方程,求解即可;
(3)第二次相遇应是走了三个半圆的长度,得到,解方程即可得到答案.
解:(1)当 t=4s 时,cm.
答:甲运动 4s 后的路程是 .
(2) 由图可知,甲乙第一次相遇时走过的路程为半圆 ,甲走过的路程为 ,
乙走过的路程为 ,则.
解得 或 (不合题意,舍去).
答:甲、乙从开始运动到第一次相遇时,它们运动了 3s.
(3) 由图可知,甲乙第二次相遇时走过的路程为三个半圆 ,
则
解得 或 (不合题意,舍去).
答:甲、乙从开始运动到第二次相遇时,它们运动了 7s.
科目:初中数学 来源: 题型:
【题目】在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同,小明从布袋里随机取出一个小球,记下数字为,小红在剩下的3个小球中随机取出一个小球,记下数字为。
(1)计算由、确定的点在函数的图象上的概率;
(2)小明和小红约定做一个游戏,其规则为:若、满足>6则小明胜,若、满足<6则小红胜,这个游戏公平吗?说明理由.若不公平,请写出公平的游戏规则.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,△ABC三个顶点的坐标分别为A(﹣5,1),B(﹣1,5),C(﹣2,2),将△ABC绕原点顺时针旋转90°得△A1B1C1,△A1B1C1与△A2B2C2关于x轴对称.
(1)画出△A1B1C1和△A2B2C2;
(2)sin∠CAB= ;
(3)△ABC与△A2B2C2组成的图形是否是轴对称图形?若是轴对称图形,请直接写出对称轴所在的直线解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是的直径,,为弧的中点,正方形绕点旋转与的两边分别交于、(点、与点、、均不重合),与分别交于、两点.
(1)求证:为等腰直角三角形;
(2)求证:;
(3)连接,试探究:在正方形绕点旋转的过程中,的周长是否存在最小值?若存在,求出其最小值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】九年级(1)班的小华和小红两名学生10次数学测试成绩如下表(表I)所示:
小花 | 70 | 80 | 90 | 80 | 70 | 90 | 80 | 100 | 60 | 80 |
小红 | 90 | 80 | 100 | 60 | 90 | 80 | 90 | 60 | 60 | 90 |
现根据上表数据进行统计得到下表(表Ⅱ):
姓名 | 平均成绩 | 中位数 | 众数 |
小华 | 80 | ||
小红 | 80 | 90 |
(1)填空:根据表I的数据完成表Ⅱ中所缺的数据;
(2)老师计算了小红的方差请你计算小华的方差并说明哪名学生的成绩较为稳定.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一块斜边长30cm的直角三角形木板(Rt△ACB)上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 已知于x的元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2.
(1)求a的取值范围;
(2)若x12+x22﹣x1x2≤30,且a为整数,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,的直径,点为线段上一动点,过点作的垂线交于点,,连结,.设的长为,的面积为.
小东根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.
下面是小东的探究过程,请帮助小东完成下面的问题.
(1)通过对图1的研究、分析与计算,得到了与的几组对应值,如下表:
0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | |
0 | 0.7 | 1.7 | 2.9 | 4.8 | 5.2 | 4.6 | 0 |
请求出表中小东漏填的数;
(2)如图2,建立平面直角坐标系,描出表中各对应值为坐标的点,画出该函数的大致图象;
(3)结合画出的函数图象,当的面积为时,求出的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校准备开春季运动会,学校要给学生买若干笔袋和笔记本作为奖品.购买2个笔袋和1个笔记本需花25元,购买3个笔袋和2个笔记本需花40元.
(1)求笔袋和笔记本的单价各是多少元?
(2)学校准备购买笔袋和笔记本共计180个,甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案,在甲商场累计购物超过1000元后,超出1000元的部分按90%收费,在乙商场累计购物超过500元后,超出500元的部分按95%收费,经过预算此次购物超过了1000元,求学校需要至少购买多少个笔袋,才能使到甲商场购物更省钱?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com