精英家教网 > 初中数学 > 题目详情

【题目】尝试探究

如图-,在△ABC中,∠C=90°,∠A=30°,点E、F分别是BC、AC边上的点,且EF//BC.

的值为 直线与直线的位置关系为

类比延伸

如图,若将图中的绕点顺时针旋转,连接,则在旋转的过程中,请判断的值及直线与直线的位置关系,并说明理由;

拓展运用

,在旋转过程中,当三点在同一直线上时,请直接写出此时线段的长.

【答案】 ;(3

【解析】

1)①根据直角三角形30°角的性质即可解决问题;

②根据已知可直接得出答案;

2)只要证明△ACFBCE,根据相似三角形的性质即可得的值,也可得∠BCE=CAF,继而推导即可得;

3)分两种情况画出图形分别解决即可.

①∵在ABC中,∠ABC=90°,∠A=30°EF//AB

∴∠CFE=A=30°

CF==ECAC==BC

AF=AC-CF=BC-EC=BC-EC=BE

=

故答案为:

②∵∠ACB=90°

,即直线与直线的位置关系为垂直,

故答案为:

理由如下:由及旋转的性质知

中,

中,

,又

=

如图,延长于点,交于点

①如图,∵ECBFCA,∴AFBE=CFCE=

BE=a,则AF=a

BEF共线,∴∠BEC=AFC=120°

∵∠EFC=30°,∴∠AFB=90°

RtABF中,AB=2BC=6AF=aBF=EF+BE=4+a

a=-1+-1-(舍去),

AF=a=

②如图,当EBF共线时,同法可证:AF=BE,∠AFB=90°

RtABF中,

a=1+1-(舍去),

AF=a=

综上,AF的长为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).

(1)请在图中,画出ABC向左平移6个单位长度后得到的△A1B1C1

(2)以点O为位似中心,将ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABCABAC10BC16

1)作△ABC的外接圆O(用圆规和直尺作图,不写作法,但要保留作图痕迹)

2)求OA的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形中,,按以下步骤作图:①分别以点和点为圆心,为圆心,大于号的长为半径面狐,两弧交于点:②做直线,且恰好经过点,与交于点,连接,则的值为(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形中,,按以下步骤作图:①分别以点和点为圆心,为圆心,大于号的长为半径面狐,两弧交于点:②做直线,且恰好经过点,与交于点,连接,则的值为(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AD5AB8,点EDC上一个动点,把△ADE沿AE折叠,若点D的对应点D′,连接DB,以下结论中:①DB的最小值为3;②当DE时,△ABD′是等腰三角形;③当DE2是,△ABD′是直角三角形;④△ABD′不可能是等腰直角三角形;其中正确的有_____.(填上你认为正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在RtABC中,∠ACB=90°,D是边AB的中点,CE=CBCD=5.

求:(1BC的长.

2tanE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某乡镇实施产业精准扶贫,帮助贫困户承包了若干亩土地种植新品草莓,已知该草莓的成本为每千克10元,草莓成熟后投入市场销售,经市场调查发现,草莓销售不会亏本,且每天的销售量y(千克)与销售单价x(元/千克)之间函数关系如图所示.

1)求yx的函数关系式,并写出x的取值范围.

2)当该品种草莓的定价为多少时,每天销售获得利润最大?最大利润是多少?

3)某村今年草莓采摘期限30天,预计产量6000千克,则按照(2)中的方式进行销售,能否销售完这批草莓?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 某校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进行了1000米跑测试.按照成绩分为优秀、良好、合格与不合格四个等级.学校绘制了如下不完整的统计图.

(1)根据给出的信息,补全两幅统计图

(2)该校九年级有600名男生,请估计成绩未达到良好有多少名?

(3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会1000米比赛预赛分为A、B、C三组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是多少?

查看答案和解析>>

同步练习册答案