精英家教网 > 初中数学 > 题目详情
7.在平面直角坐标系中,对于平面内任一点(m,n),
规定以下两种变换:
(1)f(m,n)=(m,-n),如f(2,1)=(2,-1);
(2)g(m,n)=(-m,-n),如g(2,1)=(-2,-1).
按照以上变换有:f[g(3,4)]=f(-3,-4)=(-3,4),那么g[f(2,-3)]=(-2,-3).

分析 根据f(m,n)=(m,-n),g(m,n)=(-m,-n),可得答案.

解答 解:g[f(2,-3)]=g(2,3)=(-2,-3),
故答案为:(-2,-3).

点评 本题考查了点的坐标,利用了f(m,n)=(m,-n),g(m,n)=(-m,-n),注意运算顺序:先算括号里面的.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

17.定义运算a?b=a(1-b),下列给出了关于这种运算的几个结论:
①2?(-2)=6;②a?b=b?a;③若a+b=0,则(a?a)+b(b?b)=2ab;④若a?b=0,则a=0或b=1,其中正确结论的序号是①④.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.计算:
(1)-$\frac{2{x}^{2}}{3{y}^{2}}$$•\frac{5y}{-6x}$$÷\frac{-5y}{3{x}^{2}}$
(2)$\frac{{a}^{2}}{a-1}-a-1$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.计算:$\sqrt{27}$-|1-tan60°|-(2cos45°-1)0-4sin60°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.(1)$({2\sqrt{3}+\sqrt{6}})({2\sqrt{3}-\sqrt{6}})$;       
(2)$({2\sqrt{48}-3\sqrt{27}})÷\sqrt{6}$.
(3)($\sqrt{24}$-$\sqrt{0.5}$+2$\sqrt{\frac{2}{3}}$)-($\sqrt{\frac{1}{8}}$-$\sqrt{6}$).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知x1,x2是一元二次方程(a-6)x2+2ax+a=0的两个实数根.
(1)求的a取值范围.
(2)是否存在实数a,使-x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由.
(3)求使(x1+1)(x2+1)为负整数的实数a的整数值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知:△PQR在平面直角坐标系中的位置如图所示:
(1)作△PQR关于直线m(直线m上各点的横坐标都为1)对称图形△P′Q′R′,则点M(x,y)关于直线m的对称点的坐标为(x+4,y);
(2)作△PQR关于直线n(直线n上各点的纵坐标都为-1)对称图形△P″Q″R″,则点M(x,y)关于直线n的对称点的坐标为(x,y-8).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,AB∥CD,直线EF分别交AB,CD于点E,F,∠BEF的平分线与∠DFE的平分线相交于点P.∠1与∠2的平分线EM,FN,判断EM,FN所在的直线有什么位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.解方程:$\frac{x-4}{{x}^{2}+x-2}$=$\frac{1}{x-1}$+$\frac{x-6}{{x}^{2}-4}$.

查看答案和解析>>

同步练习册答案