精英家教网 > 初中数学 > 题目详情

【题目】一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟进水量和出水量是两个常数.容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.

(1)y关于x的函数解析式;

(2)每分钟进水、出水各多少升?

【答案】(1);(2)每分钟进水、出水各5L$$ L

【解析】

1)根据题意和函数图象可以求得yx的函数关系式;

2)根据函数图象中的数据可以求得每分钟进水、出水各多少升.

解:(1)当0≤x≤4时,设y关于x的函数解析式是ykx

4k20,得k5

即当0≤x≤4时,yx的函数关系式为y5x

4≤x≤12时,设yx的函数关系式为yax+b

,得

即当4≤x≤12时,yx的函数关系式为

由上可得,

2)进水管的速度为:20÷45L/min

出水管的速度为: L/min

答:每分钟进水、出水各5L L

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知一个二次函数图象上部分点的横坐标与纵坐标的对应值如表所示:

3

2

1

0

1

0

3

4

3

0

(1)求这个二次函数的表达式;

(2)在给定的平面直角坐标系中画出这个二次函数的图象;

(3)时,直接写出的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点DEF分别是边ABACBC的中点,且BC=2AF

1)求证:四边形ADEF为矩形;

2)若∠C=30°、AF=2,写出矩形ADEF的周长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下面各图,寻找对顶角(不含平角)

1)如图(1),图中共有________对不同的对顶角.

2)如图(2),图中共有________对不同的对顶角.

3)如图(3),图中共有________对不同的对顶角.

4)研究(1~3)小题中直线条数与对顶角的对数之间的关系,若有条直线相交于一点,则可形成________对不同的对顶角.

5)计算2013条直线相交于一点,则可形成________对不同的对顶角.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OAcmOC8cm,现有两动点PQ分别从OC同时出发,P在线段OA上沿OA方向以每秒cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1cm的速度匀速运动.设运动时间为t秒.

(1)用t的式子表示△OPQ的面积S

(2)求证:四边形OPBQ的面积是一个定值,并求出这个定值;

(3)当△OPQ与△PAB和△QPB相似时,抛物线yx 2bxc经过BP两点,过线段BP上一动点My轴的平行线交抛物线于N,当线段MN的长取最大值时,求直线MN把四边形OPBQ分成两部分的面积之比.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各题计算正确的是 ( )

A. (ab﹣1)·(﹣4ab2)=﹣4a2b3﹣4ab2 B. (3x2+xyy2)·3x2=9x4+3x3yy2

C. (﹣3a)·(a2﹣2a+1)=﹣3a3+6a2 D. (﹣2x)·(3x2﹣4x﹣2)=﹣6x3+8x2+4x

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与x轴交于A(1,0),B(﹣3,0)两点,现有经过点A的直线l:y=kx+b1与y轴交于点C,与抛物线的另个交点为D.

(1)求抛物线的函数表达式;

(2)若点D在第二象限且满足CD=5AC,求此时直线1的解析式;在此条件下,点E为直线1下方抛物线上的一点,求ACE面积的最大值,并求出此时点E的坐标;

(3)如图,设P在抛物线的对称轴上,且在第二象限,到x轴的距离为4,点Q在抛物线上,若以点A,D,P,Q为顶点的四边形能否成为平行四边形?若能,请直接写出点Q的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处。
1)求证:四边形AECF是平行四边形;
2)若AB=6AC=10,求四边形AECF的面积。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC的周长是20,OB和OC分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=3,则△ABC的面积是(  )

A. 20 B. 25 C. 30 D. 35

查看答案和解析>>

同步练习册答案