精英家教网 > 初中数学 > 题目详情

如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.

(1)求证:BE=CF;

(2)当四边形ACDE为菱形时,求BD的长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.如图,点P是正△ABC内一点.
(1)以点B为旋转中心,将△PBC逆时针旋转60°,试画出旋转后的图形;
(2)若PB=3,PC=4,∠BPC=150°,请求出PA的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,四边形ABCD是正方形,E是AD边上一点,将正方形折叠,使点B与点E重合,FG是折痕,C点落在H上,EH与CD交于点N.求证:∠EBN=45°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,抛物线y=x2+bx+c与y轴交于点C,与x轴交于点A,B,点A在点B的左侧,点A的坐标为A(-3,0),且AB=4.
(1)求抛物线的解析式;
(2)若过点C且与x轴平行的直线交抛物线于另一个点D,抛物线的顶点为点E,试判断△CDE的形状,并求其面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.阅读下列材料,然后回答问题.
在进行二次根式的化简与运算时,我们有时会碰上如$\frac{2}{\sqrt{3}+1}$这样的式子,我们要用到分母有理化的方法将其化简:
$\frac{2}{\sqrt{3}+1}$=$\frac{2×(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}$=$\frac{2(\sqrt{3}-1)}{{(\sqrt{3})}^{2}-{1}^{2}}=\sqrt{3}-1$
除了分母有理化,还可以用以下方法化简:
$\frac{2}{\sqrt{3}+1}$=$\frac{3-1}{\sqrt{3}+1}=\frac{{(\sqrt{3})}^{2}-{1}^{2}}{\sqrt{3}+1}=\frac{(\sqrt{3}+1)(\sqrt{3}-1)}{\sqrt{3}+1}=\sqrt{3}-1$
(1)请用不同的方法化简$\frac{2}{\sqrt{5}+\sqrt{3}}$.
(2)求$\frac{2}{\sqrt{3}+1}$+$\frac{2}{\sqrt{5}+\sqrt{3}}$+$\frac{2}{\sqrt{7}+\sqrt{5}}$+…+$\frac{2}{\sqrt{2n+1}+\sqrt{2n-1}}$的值(n为正整数)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.把下列二次根式化简最简二次根式:
(1)$\sqrt{32}$;(2)$\sqrt{40}$;(3)$\sqrt{1.5}$;(4)$\sqrt{\frac{4}{3}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知:正十边形外接圆的半径为R.求证:正十边形的边长a10=$\frac{1}{2}$($\sqrt{5}$-1)R.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在某海域内有A,C两个港口,港口C在港口A北偏东60°方向上,一艘船以每小时36海里的速度沿北偏东30°的方向驶离A港口,3小时后到达B点位置,在B处测得港口C在B处的南偏东75°方向上,求B处离港口C有多少海里.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.计算:2-3=$\frac{1}{8}$,(-2)0=1,($\frac{1}{2}$)-2=4.

查看答案和解析>>

同步练习册答案