精英家教网 > 初中数学 > 题目详情

【题目】若一个多边形的各边都相等,它的周长是63,且它的内角和为900°,则它的边长是________.

【答案】9

【解析】

试题分析:设多边形的边数为n,先根据多边形的内角和求出多边形的边数,再根据周长即可求出边长.

设多边形的边数为n,由题意得

(n-2)·180°=900°

解得n=7,

则它的边长是63÷7=9.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】点A、B、C在数轴上表示的数a、b、c满足(b+3)2+|c﹣24|=0,且多项式x|a+3|y2﹣ax3y+xy2﹣1是五次四项式.
(1)a的值为 , b的值为 , c的值为
(2)已知点P、点Q是数轴上的两个动点,点P从点A出发,以3个单位/秒的速度向右运动,同时点Q从点C出发,以7个单位/秒的速度向左运动:
①若点P和点Q经过t秒后在数轴上的点D处相遇,求出t的值和点D所表示的数;
②若点P运动到点B处,动点Q再出发,则P运动几秒后这两点之间的距离为5个单位?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系内,已知点A06)、点B80),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点PQ移动的时间为t秒.

1求直线AB的解析式;

2t为何值时,△APQ与△AOB相似?

3t为何值时,△APQ的面积为个平方单位?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A(2,﹣2),如果点A关于x轴的对称点是B,点B关于原点的对称点是C,那么C点的坐标是(
A.(2,2)
B.(﹣2,2)
C.(﹣1,﹣1)
D.(﹣2,﹣2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】连接AB,直线AB与x轴交于点C,与y轴交于点D,平面内有一点E(3,1),直线BE与x轴交于点F.直线AB的解析式记作y1=kx+b,直线BE解析式记作y2=mx+t.求:

(1)直线AB的解析式△BCF的面积;
(2)当x等于多少时,kx+b>mx+t;
当x等于多少时,kx+b<mx+t;
当x等于多少时,kx+b=mx+t;
(3)在x轴上有一动点H,使得△OBH为等腰三角形,求H的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】化简求值:2(a2ab)﹣3(2a2ab),其中a=﹣2,b=3.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题
(1)已知n正整数,且 ,求 的值;
(2)如图,AB、CD交于点O,∠AOE=90°,若∠AOC︰∠COE=5︰4,求∠AOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各式计算正确的是( )
A.a5+a5=a10
B.a6a4=a24
C.a6÷a6=1
D.(a42=a6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图1,抛物线过点且对称轴为直线点B为直线OA下方的抛物线上一动点,点B的横坐标为m.

(1)求该抛物线的解析式:

(2)若△OAB的面积为S.求S关于m的函数关系式,并求出S的最大值.

(3)如图2,过点B作直线BC∥y轴,交线段OA于点C,在抛物线的对称轴上是否存在点D,使△BCD是以D为直角顶点的等腰直角三角形?若存在,求出所有符合条件的点B的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案