【题目】如图,直线,与和分别相切于点和点.点和点分别是和上的动点,沿和平移.的半径为,.下列结论错误的是( )
A. B. 若与相切,则
C. 若,则与相切 D. 和的距离为
【答案】B
【解析】
连结OA、OB,根据切线的性质和l1∥l2得到AB为⊙O的直径,则l1和l2的距离为2;当MN与⊙O相切,连结OM,ON,当MN在AB左侧时,根据切线长定理得∠AMO=∠AMN=30°,在Rt△AMO中,利用正切的定义可计算出AM=,在Rt△OBN中,由于∠ONB=∠BNM=60°,可计算出BN=,当MN在AB右侧时,AM=,所以AM的长为或;当∠MON=90°时,作OE⊥MN于E,延长NO交l1于F,易证得Rt△OAF≌Rt△OBN,则OF=ON,于是可判断MO垂直平分NF,所以OM平分∠NMF,根据角平分线的性质得OE=OA,然后根据切线的判定定理得到MN为⊙O的切线.
连结OA、OB,如图1,
∵⊙O与l1和l2分别相切于点A和点B,
∴OA⊥l1,OB⊥l2,
∵l1∥l2,
∴点A、O、B共线,
∴AB为⊙O的直径,
∴l1和l2的距离为2;故C正确,
作NH⊥AM于H,如图1,
则NH=AB=2,
∵∠AMN=60°,
∴sin60°=,
∴MN=;故A正确,
当MN与⊙O相切,如图2,连结OM,ON,
当MN在AB左侧时,∠AMO=∠AMN=×60°=30°,
在Rt△AMO中,tan∠AMO=,即AM=,
在Rt△OBN中,∠ONB=∠BNM=60°,tan∠ONB=,即BN=,
当MN在AB右侧时,AM=,
∴AM的长为或;故B错误,
当∠MON=90°时,作OE⊥MN于E,延长NO交l1于F,如图2,
∵OA=OB,
∴Rt△OAF≌Rt△OBN,
∴OF=ON,
∴MO垂直平分NF,
∴OM平分∠NMF,
∴OE=OA,
∴MN为⊙O的切线.故D正确.
故选B.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.
(1)求证:△DEF是等腰三角形;
(2)当∠A=45°时,求∠DEF的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△BCD中,∠CBD=90°,BC=BD,点A在CB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EF⊥EA,交CD所在直线于点F.
(1)试求证图(1)中:∠BAE=∠DEF;
(2)当点E在线段BD上移动时,如图(1)所示,求证:AE=EF;
(3)当点E在直线BD上移动时,在图(2)与图(3)中,分别猜想线段AE与EF有怎样的数量关系,并就图(3)的猜想结果说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,,,,以斜边的中点为旋转中心,把这个三角形按逆时针方向旋转得到,则旋转后两个直角三角形重叠部分的面积为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c的顶点M在第二象限,且经过点 A(1,0)和点 B(0,2).则
(1)a 的取值范围是________;
(2)若△AMO的面积为△ABO面积的倍时,则a的值为________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示是某公园为迎接“中国–南亚博览会”设置的一休闲区.,弧的半径长是米,是的中点,点在弧上,,则图中休闲区(阴影部分)的面积是( )
A. 米 B. 米 C. 米 D. 米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将△ABC绕点A顺时针旋转60°得到△ADE,点C的对应点E恰好落在BA的延长线上,DE与BC交于点F,连接BD.下列结论不一定正确的是( )
A. AD=BD B. AC∥BD C. DF=EF D. ∠CBD=∠E
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是( )
A.AD=BC,BD=ACB.AD=BC,∠BAD=∠ABC
C.BD=AC,∠DBA=∠CABD.AD=BC,∠D=∠C
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如下图,已知直线分别与轴,轴交于,两点,直线:交于点.
(1)求,两点的坐标;
(2)如图1,点E是线段OB的中点,连结AE,点F是射线OG上一点, 当,且时,求的长;
(3)如图2,若,过点作∥,交轴于点,此时在轴上是否存在点,使,若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com