精英家教网 > 初中数学 > 题目详情

【题目】如图,在四边形ABCD中,AC平分∠BCDAC⊥ABEBC的中点,AD⊥AE

1)求证:AC2=CD·BC

2)过EEG⊥AB,并延长EG至点K,使EK=EB

若点H是点D关于AC的对称点,点FAC的中点,求证:FH⊥GH

∠B=30°,求证:四边形AKEC是菱形.

【答案】1)证明过程见解析;(2)证明过程见解析.

【解析】

1)欲证明AC2=CDBC,只需推知△ACD∽△BCA即可;(2连接AH.构建直角△AHC,利用直角三角形斜边上的中线等于斜边的一半、等腰对等角以及等量代换得到:∠FHG=∠CAB=90°,即FH⊥GH

利用在直角三角形中,30度角所对的直角边等于斜边的一半直角三角形斜边上的中线等于斜边的一半推知四边形AKEC的四条边都相等,则四边形AKEC是菱形.

解:(1∵AC平分∠BCD∴∠DCA=∠ACB

∵AC⊥ABAD⊥AE

∴∠DAC+∠CAE=90°∠CAE+∠EAB=90°

∴∠DAC=∠EAB

∵EBC的中点, ∴AE=BE

∴∠EAB=∠ABC∴∠DAC=∠ABC

∴△ACD∽△BCA

=CD·BC

2证明:连接AH∵∠ADC=∠BAC=90°,点HD关于AC对称,∴AH⊥BC

∵EG⊥ABAE=BE

GAB的中点,

∴HG=AG∴∠GAH=∠GHA

FAC的中点,

∴AF=FH∴∠HAF=∠FHA

∴∠FHG=∠AHF+∠AHG=∠FAH+∠HAG=∠CAB=90°

∴FH⊥GH

②∵EK⊥ABAC⊥AB ∴EK∥AC

∵∠B=30°∴AC=BC=EB=EC

EK=EB∴EK=AC

AK=KE=EC=CA四边形AKEC是菱形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,经过原点O的抛物线(a0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t).

(1)求这条抛物线的表达式;

(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;

(3)如图2,若点M在这条抛物线上,且MBO=ABO,在(2)的条件下,是否存在点P,使得POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将大小相同的正三角形按如图所示的规律拼图案,其中第①个图案中有6个小三角形和1个正六边形;第②个图案中有10个小三角形和2个正六边形;第③个图案中有14个小三角形和3个正六边形;;按此规律排列下去,已知一个小三角形的面积为a,一个正六边形的面积为b,则第⑧个图案中所有的小三角形和正六边形的面积之和为____________(结果用含ab的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数yax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(1),下列结论:其中正确的个数是(  )

①a0

②b0

③c0

⑤a+b+c0

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线BCyx轴于点B,点Ax轴正半轴上,OC为△ABC的中线,C的坐标为(m

1)求线段CO的长;

2)点DOC的延长线上,连接AD,点EAD的中点,连接CE,设点D的横坐标为t,△CDE的面积为S,求St的函数解析式;

3)在(2)的条件下,点F为射线BC上一点,连接DBDF,且∠FDB=∠OBDCE,求此时S值及点F坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=-2x+12分别与y轴,x轴交于AB两点,点My轴上,以点M为圆心的⊙M与直线AB相切于点D,连接MD.

(1)求证:△ADM∽△AOB.

(2)如果⊙M的半径为2,请写出点M的坐标,并写出以点为顶点,且过点M的抛物线的函数表达式.

(3)(2)的条件下,试问在此抛物线上是否存在点P,使以PAM三点为顶点的三角形与△AOB相似?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,对角线ACBD相交于点O,点EBC上的一个动点,连接DE,交AC于点F

1)如图①,当时,求的值;

2)如图②,当点EBC的中点时,过点FFGBC于点G,求证:CG=BG

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线yx2x3x轴的交点为AD(AD的右侧),与y轴的交点为C.

(1)直接写出ADC三点的坐标;

(2)若点M在抛物线上,使得MAD的面积与CAD的面积相等,求点M的坐标;

(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以ABCP四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:点ABC都在⊙O上,连接ABAC,点DE分别在ACAB上,连接CE并延长交⊙O于点F,连接BDBF,∠BDC﹣∠BFC2ABF

1)如图1,求证:∠ABD2ACF

2)如图2CEBD于点G,过点GGMAC于点M,若AMMD,求证:AEGD

3)如图3,在(2)的条件下,当AEBE87时,连接DE,且∠ADE30°.延长BD交⊙O于点H,连接AHAH8,求⊙O的半径.

查看答案和解析>>

同步练习册答案