精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,AB=AC,以AC为直径的O交BC于点D,交AB于点E,过点D作DFAB,垂足为F,连接DE.

(1)求证:直线DF与O相切;

(2)若AE=7,BC=6,求AC的长.

【答案】(1)见解析;(2)9

【解析】

试题分析:(1)连接OD,利用AB=AC,OD=OC,证得ODAD,易证DFOD,故DF为O的切线;

(2)证得BED∽△BCA,求得BE,利用AC=AB=AE+BE求得答案即可.

(1)证明:如图,

连接OD.

AB=AC

∴∠B=C

OD=OC

∴∠ODC=C

∴∠ODC=B

ODAB

DFAB

ODDF

点D在O上,

直线DF与O相切;

(2)解:四边形ACDE是O的内接四边形,

∴∠AED+ACD=180°

∵∠AED+BED=180°

∴∠BED=ACD

∵∠B=B

∴△BED∽△BCA

=

ODAB,AO=CO,

BD=CD=BC=3,

AE=7

=

BE=2

AC=AB=AE+BE=7+2=9

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点E、F、G、H分别在菱形ABCD的四条边上,BE=BF=DG=DH,连接EF,FG,GH,HE,得到四边形EFGH,若AB=a,A=60°,当四边形

EFGH的面积取得最大时,BE的长度为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一组数据3,4,x,5,7的平均数是5,则这组数据的中位数是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数据2,4,4,4,6的众数是 ,平均数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形DEFG是ABC的内接矩形,如果ABC的高线AH长8cm,底边BC长10cm,设DG=xcm,DE=ycm,

(1)求y关于x的函数关系式;

(2)当x为何值时,四边形DEFG的面积最大?最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A(3,2)和点E是正比例函数y=ax与反比例函数的图象的两个交点.

(1)填空:点E坐标: ;不等式的解集为

(2)求正比例函数和反比例函数的关系式;

(3)P(m,n)是函数图象上的一个动点,其中0<m<3.过点P作PBy轴于点B,过点A作ACx轴于点C,直线PB、AC交于点D.当P为线段BD的中点时,求POA的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A(,1)、B(2,0)、O(0,0),反比例函数y=图象经过点A.

(1)求k的值;

(2)将AOB绕点O逆时针旋转60°,得到COD,其中点A与点C对应,试判断点D是否在该反比例函数的图象上?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,AB=5,AD=3,AE平分DAB交BC的延长线于F点,则CF=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正比例函数y=kx(x≥0)与反比例函数y=的图象交于点A(2,3),

(1)求k,m的值;

(2)写出正比例函数值大于反比例函数值时自变量x的取值范围.

查看答案和解析>>

同步练习册答案