精英家教网 > 初中数学 > 题目详情
1.在△ABC中,∠C=90°,tanA=$\frac{12}{5}$,△ABC的周长为60,那么△ABC的面积为(  )
A.60B.30C.240D.120

分析 由tanA的值,利用锐角三角函数定义设出BC与AC,进而利用勾股定理表示出AB,由周长为60求出x的值,确定出两直角边,即可求出三角形面积.

解答 解:如图所示,由tanA=$\frac{12}{5}$,
设BC=12x,AC=5x,根据勾股定理得:AB=13x,
由题意得:12x+5x+13x=60,
解得:x=2,
∴BC=24,AC=10,
则△ABC面积为120,
故选D

点评 此题考查了解直角三角形,锐角三角函数定义,以及勾股定理,熟练掌握勾股定理是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

11.如图,甲、乙两盏路灯相距30米,一天晚上,当小刚从路灯甲底部向路灯乙底部直行25米时,发现自己的身影顶部正好接触到路灯乙的底部,已知小刚的身高为1.5米,那么路灯甲的高为(  )
A.9米B.8米C.7米D.6米

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.(1)比较下列各式的大小:
①|-2|+|3|与|-2+3|;
②|-2|+|-3|与|-2-3|;
③|-2|+|0|与|-2+0|;
(2)请你由(1)归纳总结出|a|+|b|与|a+b|(a、b为有理数)的大小关系,并用文字语言叙述此关系;
(3)根据(2)中的结论,求当|x|+2016=|x-2016|时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.观察下列各式:①1×3=12+2×1;②2×4=22+2×2;③3×5=32+2×3;…则第n个式子可以表示为n×(n+2)=n2+2n.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.在Rr△ABC中,∠C=90°,AC=BC=1,点O为AB的中点,点D、E分别为AC、AB边上的动点,且保持DO⊥EO,连接CO、DE交于点P.
(1)求证:OD=OE;
(2)在运动的过程中,DP•EP是否存在最大值?若存在,请求出DP•EP的最大值;若不存在,请说明理由.
(3)若CD=2CE,求DP的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,在△ABE中,∠AEB=90°,AB=$\sqrt{29}$,以AB为边在△ABE的同侧作正方形ABCDD,点O是正方形对角线的交.点,连接OE,OE=$\frac{3}{2}$$\sqrt{2}$,点P为AB上一动点,将△APE沿直线PE翻折得到△A′PE,当A′P⊥BE于点F时,BF的长度是5-$\frac{10\sqrt{29}}{29}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,经过点A作AE⊥OC,垂足为点D,AE与BC交于点F,与过点B的直线交于点E,且EB=EF.
(1)求证:BE是⊙O的切线;
(2)若CD=1,cos∠AEB=$\frac{3}{5}$,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.若一个四边形的一条对角线把四边形分成两个等腰三角形,且其中一个等腰三角形的底角是另一个等腰三角形底角的2倍,我们把这条对角线叫做这个四边形的黄金线,这个四边形叫做黄金四边形.
(1)如图1,在四边形ABCD中,AB=AD=DC,对角线AC,BD都是黄金线,且AB<AC,CD<BD,求四边形ABCD各个内角的度数;
(2)如图2,点B是弧AC的中点,请在⊙O上找出所有的点D,使四边形ABCD的对角线AC是黄金线(要求:保留作图痕迹);
(3)在黄金四边形ABCD中,AB=BC=CD,∠BAC=30°,求∠BAD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60平方米,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为多少米?

查看答案和解析>>

同步练习册答案