精英家教网 > 初中数学 > 题目详情

【题目】如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是(
A.∠A=∠C
B.AD=CB
C.BE=DF
D.AD∥BC

【答案】B
【解析】解:∵AE=CF, ∴AE+EF=CF+EF,
∴AF=CE,
A、∵在△ADF和△CBE中

∴△ADF≌△CBE(ASA),正确,故本选项错误;
B、根据AD=CB,AF=CE,∠AFD=∠CEB不能推出△ADF≌△CBE,错误,故本选项正确;
C、∵在△ADF和△CBE中

∴△ADF≌△CBE(SAS),正确,故本选项错误;
D、∵AD∥BC,
∴∠A=∠C,
∵在△ADF和△CBE中

∴△ADF≌△CBE(ASA),正确,故本选项错误;
故选B.
求出AF=CE,再根据全等三角形的判定定理判断即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,如图四边形AOBC为正方形,点C的坐标为(4 ,0),动点P沿着折线OACB的方向以1个单位每秒的速度匀速运动,同时点Q沿着折线OBCA的方向匀速运动,速度是2个单位长度每秒,运动时间为t秒,当他们相遇时同时停止运动.

(1)点A的坐标是正方形AOBC的面积是
(2)将正方形绕点O顺时针旋转45°,求旋转后的正方形与原正方形的重叠部分的面积.
(3)运动时间t为多少秒时,以A、P、B、Q四点为顶点的四边形为平行四边形?
(4)是否存在这样的t值,使△OPQ成为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AE、BF分别平分∠DAB和∠ABC,交CD于点E、F,AE、BF相交于点M.
(1)试说明:AE⊥BF;
(2)判断线段DF与CE的大小关系,并予以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列计算正确的是

A. 5 (6) 11 B. 1.3 (1.7) 3

C. (11) 7 4 D. (7) (8) 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,三角形ABC(记作△ABC)在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先将△ABC向上平移3个单位长度,再向右平移2个单位长度,得到A1B1C1

(1)在图中画出△A1B1C1
(2)点A1 , B1 , C1的坐标分别为
(3)若y轴有一点P,使△PBC与△ABC面积相等,求出P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一张等腰三角形纸片,AB=AC=5,BC=3,小明将它沿虚线PQ剪开,得到AQP和四边形BCPQ两张纸片(如图所示),且满足BQP=B,则下列五个数据,3,,2,中可以作为线段AQ长的有 个.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.

(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.

(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.

(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB、CD相交于点O,OM⊥AB.

(1)若∠1=∠2,求∠NOD.
(2)若∠1= ∠BOC,求∠AOC与∠MOD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某酒店有三人间、双人间客房若干,各种房型每天的收费标准如下:

普通(元/间) 

 豪华(元/间)

三人间 

160

400

双人间

140

300

一个50人的旅游团到该酒店入住,选择了一些三人普通间和双人豪华间入住,且恰好住满.已知该旅游团当日住宿费用共计4020元,问该旅游团入住的三人普通间和双人豪华间各为几间?

查看答案和解析>>

同步练习册答案