精英家教网 > 初中数学 > 题目详情

【题目】如图,直线AB、CD相交于点O,OM⊥AB.

(1)若∠1=∠2,求∠NOD.
(2)若∠1= ∠BOC,求∠AOC与∠MOD.

【答案】
(1)解:∵OM⊥AB,

∴∠AOM=∠1+∠AOC=90°,

∵∠1=∠2,

∴∠NOC=∠2+∠AOC=90°,

∴∠NOD=180°﹣∠NOC=180°﹣90°=90°;


(2)解:∵OM⊥AB,

∴∠AOM=∠BOM=90°,

∵∠1= ∠BOC,

∴∠BOC=∠1+90°=3∠1,

解得∠1=45°,

∠AOC=90°﹣∠1=90°﹣45°=45°,

∠MOD=180°﹣∠1=180°﹣45°=135°.


【解析】根据垂线的定义,角的运算,掌握图形间角的关系得出答案.

【考点精析】本题主要考查了对顶角和邻补角和垂线的性质的相关知识点,需要掌握两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个;垂线的性质:1、过一点有且只有一条直线与己知直线垂直.2、垂线段最短才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】将抛物线y=﹣(x﹣3)2+5向下平移6个单位,所得到的抛物线的顶点坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是(
A.∠A=∠C
B.AD=CB
C.BE=DF
D.AD∥BC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有五条线段,长度分别是2,4,6,8,10,从中任取三条能构成三角形的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,AB=3,AD=4,动点Q从点A出发,以每秒1个单位的速度,沿AB向点B移动;同时点P从点B出发,仍以每秒1个单位的速度,沿BC向点C移动,连接QP,QD,PD.若两个点同时运动的时间为x秒(0<x≤3),解答下列问题:

(1)设△QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最大值?并求出最小值;

(2)是否存在x的值,使得QP⊥DP?试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知RtABC中,B=90°,AC=20,AB=10,P是边AC上一点(不包括端点A、C),过点P作PEBC于点E,过点E作EFAC,交AB于点F.设PC=x,PE=y.

(1)求y与x的函数关系式;

(2)是否存在点P使PEF是Rt?若存在,求此时的x的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系网格中,将ABC进行位似变换得到A1B1C1

(1)A1B1C1ABC的位似比是

(2)画出A1B1C1关于y轴对称的A2B2C2

(3)设点P(a,b)为ABC内一点,则依上述两次变换后,点P在A2B2C2内的对应点P2的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】足球比赛的积分规则:胜一场得3分,平一场得1分,负一场得0分.一个队进行了14场比赛,其中负5场,共得19分,那么这个对共胜了( )场.
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】泰兴市新区对曾涛路进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.则原有树苗( )棵.
A.100
B.105
C.106
D.111

查看答案和解析>>

同步练习册答案