精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABCD中,AE、BF分别平分∠DAB和∠ABC,交CD于点E、F,AE、BF相交于点M.
(1)试说明:AE⊥BF;
(2)判断线段DF与CE的大小关系,并予以说明.

【答案】
(1)解:方法一:如图①,

∵在ABCD中,AD∥BC,

∴∠DAB+∠ABC=180°.

∵AE、BF分别平分∠DAB和∠ABC,

∴∠DAB=2∠BAE,∠ABC=2∠ABF.

∴2∠BAE+2∠ABF=180°.

即∠BAE+∠ABF=90°.

∴∠AMB=90°.

∴AE⊥BF.

方法二:如图②,延长BC、AE相交于点P,

∵在ABCD中,AD∥BC,

∴∠DAP=∠APB.

∵AE平分∠DAB,

∴∠DAP=∠PAB.

∴∠APB=∠PAB.

∴AB=BP.

∵BF平分∠ABP,

∴AP⊥BF,

即AE⊥BF


(2)解:方法一:线段DF与CE是相等关系,即DF=CE,

∵在ABCD中,CD∥AB,

∴∠DEA=∠EAB.

又∵AE平分∠DAB,

∴∠DAE=∠EAB.

∴∠DEA=∠DAE.

∴DE=AD.

同理可得,CF=BC.

又∵在ABCD中,AD=BC,

∴DE=CF.

∴DE﹣EF=CF﹣EF.

即DF=CE.

方法二:如图,延长BC、AE设交于点P,延长AD、BF相交于点O,

∵在ABCD中,AD∥BC,

∴∠DAP=∠APB.

∵AE平分∠DAB,

∴∠DAP=∠PAB.

∴∠APB=∠PAB.

∴BP=AB.

同理可得,AO=AB.

∴AO=BP.

∵在ABCD中,AD=BC,

∴OD=PC.

又∵在ABCD中,DC∥AB,

∴△ODF∽△OAB,△PCE∽△PBA.

= =

∴DF=CE.


【解析】(1)因为AE,BF分别是∠DAB,∠ABC的角平分线,那么就有∠MAB= ∠DAB,∠MBA= ∠ABC,而∠DAB与∠ABC是同旁内角互补,所以,能得到∠MAB+∠MBA=90°,即得证.(2)两条线段相等.利用平行四边形的对边平行,以及角平分线的性质,可以得到△ADE和△BCF都是等腰三角形,那么就有CF=BC=AD=DE,再利用等量减等量差相等,可证.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数 的图象与反比例函数 的图象交于点A﹙2,5﹚、
C﹙5,n﹚,交y轴于点B,交x轴于点D.

(1)求反比例函数 和一次函数 的表达式;
(2)连接OA、OC.求△AOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一个被抹去x轴、y轴及原点O的网格图,网格中每个小正方形的边长均为1个单位长度,三角形ABC的各顶点都在网格的格点上,若记点A的坐标为(﹣1,3),点C的坐标为(1,﹣1).

(1)请在图中找出x轴、y轴及原点O的位置;
(2)把△ABC向下平移2个单位长度,再向右平移3个单位长度,请你画出平移后的△A1B1C1 , 若△ABC内部一点P的坐标为(a,b),则点P的对应点P1的坐标是
(3)试求出△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将抛物线y=﹣(x﹣3)2+5向下平移6个单位,所得到的抛物线的顶点坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,AD>AB
(1)分别作∠ABC和∠BCD的平分线,交AD于E、F.
(2)线段AF与DE相等吗?请证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知矩形OABC中,OA=3,AB=6,以OA,OC所在的直线为坐标轴,建立如图1的平面直角坐标系.将矩形OABC绕点O顺时针方向旋转,得到矩形ODEF,当点B在直线DE上时,设直线DE和x轴交于点P,与y轴交于点Q.

(1)求证:△BCQ≌△ODQ;
(2)求点P的坐标;
(3)若将矩形OABC向右平移(图2),得到矩形ABCG,设矩形ABCG与矩形ODEF重叠部分的面积为S,OG=x,请直接写出x≤3时,S与x之间的函数关系式,并且写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是(
A.∠A=∠C
B.AD=CB
C.BE=DF
D.AD∥BC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系网格中,将ABC进行位似变换得到A1B1C1

(1)A1B1C1ABC的位似比是

(2)画出A1B1C1关于y轴对称的A2B2C2

(3)设点P(a,b)为ABC内一点,则依上述两次变换后,点P在A2B2C2内的对应点P2的坐标是

查看答案和解析>>

同步练习册答案