精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABCD中,过点DDEBDBA的延长线于点E.

(1)ABCD是菱形时,证明:AE=AB;

(2)ABCD是矩形时,设∠E=α,问:∠E与∠DOA满足什么数量关系?写出结论并说明理由.

【答案】(1)证明见解析;(2)∠E=90°﹣

【解析】

(1)由四边形ABCD是菱形可得ACBD,AB=CD,根据DEBD,可证四边形ACDE是平行四边形,可证得结论.(2)由题意可得∠DOA=2OBA,E=90°-OBA,即可求∠E与∠DOA的数量关系.

证明:(1)∵四边形ABCD是菱形,

ACBD,ABCD,AB=CD;

DEBD,ACBD,

ACDE,且CDAB,

∴四边形ACDE是平行四边形,

AE=CDAB=CD,

AE=AB;

(2)E=90°﹣

∵四边形ABCD是矩形,

AO=BO,

∴∠OBA=OAB;

DEBD,DOA=OBA+OAB,

∴∠E=90°﹣OBA,DOA=2OBA,

∴∠E=90°﹣.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC中,点O是边AC上一个动点,过O作直线MNBC.设MN交ACB的平分线于点E,交ACB的外角平分线于点F.

(1)求证:OE=OF;

(2)若CE=12,CF=5,求OC的长;

(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE.将ADE沿AE对折至AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①ABG≌△AFG;②BG=GC;③EG=DE+BG;④AGCF;⑤S△FGC=3.6.其中正确结论的个数是(

A.2 B.3 C.4 D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知OAOB,点O为垂足,OC是∠AOB内任意一条射线,OBOD分别平分∠COD,∠BOE,下列结论:①∠COD=BOE;②∠COE=3BOD;③∠BOE=AOC;④∠AOC与∠BOD互余,其中正确的有______(只填写正确结论的序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,所有小正方形的边长都为1ABC都在格点上.

1)过点C画直线AB的平行线(不写画法,下同);

2)过点A画直线BC的垂线,并注明垂足为G;过点A画直线AB的垂线,交BC于点H

3)线段_____的长度是点A到直线BC的距离;

4)线段AGAH的大小关系为AG_____AH.(填“>”或“<”或“=”),理由________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将边长为4的正方形ABCD沿着折痕EF折叠,使点B落在边AD的中点G.

(1)求线段BE的长;

(2)连接BF、GF,求证:BF=GF;

(3)求四边形BCFE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABD是以BD为斜边的等腰直角三角形,△BCD中,∠DBC=90°,∠BCD=60°,DC中点为E,AD与BE的延长线交于点F,则∠AFB的度数为( )

A.30°
B.15°
C.45°
D.25°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解学生平均每天课外阅读的时间,随机调查了该校部分学生一周内平均每天课外阅读的时间(以分钟为单位,并取整数),将有关数据统计整理并绘制成尚未完成的频率分布表和频数分布直方图.请你根据图表中所提供的信息,解答下列问题.
频率分布表

组别

分组

频数

频率

1

15~25

7

0.14

2

25~35

a

0.24

3

35~45

20

0.40

4

45~55

6

b

5

55~65

5

0.10

注:这里的15~25表示大于等于15同时小于25.

(1)求被调查的学生人数;
(2)直接写出频率分布表中的a和b的值,并补全频数分布直方图;
(3)若该校共有学生500名,则平均每天课外阅读的时间不少于35分钟的学生大约有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)已知4m=a8n=b,用含ab的式子表示下列代数式①求:22m+3n的值,

②求:24m6n的值;

2)已知2×8x×16=223,x的值

查看答案和解析>>

同步练习册答案