【题目】已知关于x的方程(x+1)(x﹣3)+m=0(m<0)的两根为a和b,且a<b,用“<”连接﹣1、3、a、b的大小关系为_____.
【答案】a<﹣1<3<b
【解析】
由于(x+1)(x-3)=-m,于是可把a、b看作抛物线y=(x+1)(x-3)与直线y=-m的两交点的横坐标,而抛物线y=(x+1)(x-3)与x轴的两交点坐标为(-1,0),(3,0),然后画出函数图象,再利用函数图象即可得到-1、3、a、b的大小关系.
解:∵(x+1)(x﹣3)+m=0(m<0),
∴(x+1)(x﹣3)=﹣m,
∴a、b可看作抛物线y=(x+1)(x﹣3)与直线y=﹣m的两交点的横坐标,
∵抛物线y=(x+1)(x﹣3)与x轴的两交点坐标为(﹣1,0),(3,0),如图,
∴用“<”连接﹣1、3、a、b的大小关系为a<﹣1<3<b.
故答案为:a<﹣1<3<b.
科目:初中数学 来源: 题型:
【题目】如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了40m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(结果精确到1m)(参考数据:≈1.732,≈1.414)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线经过点A(﹣1,0)和B(2,0),直线y=x+m经过点A和抛物线的另一个交点为C.
(1)求抛物线的解析式.
(2)动点P、Q从点A出发,分别沿线段AC和射线AO运动,运动的速度分别是每秒4个单位长度和3个单位长度.连接PQ,设运动时间为t秒,△APQ的面积为s,求s与t的函数关系式.(不写t的取值范围)
(3)在(2)的条件下,线段PQ交抛物线于点D,点E在线段AP上,且AE=AQ,连接ED,过点D作DF⊥DE交x轴于点F,当DF=DE时,求点F的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.
(1)求抛物线的表达式;
(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
(3)如图2,连接BC,PB,PC,设△PBC的面积为S.
①求S关于t的函数表达式;
②求P点到直线BC的距离的最大值,并求出此时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,□ABCD中,AB⊥AC,AB=1,BC=.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.
(1)试说明在旋转过程中,线段AF与EC总保持相等;
(2)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,请直接写出此时AC绕点O顺时针旋转的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC的顶点A,C分别在x轴,y轴上,顶点B在第一象限,AB=1.将线段OA绕点O按逆时针方向旋转60°得到线段OP,连接AP,反比例函数(k≠0)的图象经过P,B两点,则k的值为______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.
(1)请判断AD与BC的位置关系,并说明理由;
(2)若BC=6,ED=2,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知 △ABC 的三个顶点的坐标分别为 A(-2,3)、B(-6,0)、C(-1,0).
(1)将△ABC绕坐标原点O逆时针旋转 90°. 画出图形,直接写出点B的对应点的坐标;
(2)请直接写出:以 A、B、C 为顶点的平行四边形的第四个顶点 D 的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com