精英家教网 > 初中数学 > 题目详情

【题目】如图,点A,B,C,D在⊙O上, =2 =3 ,延长BC,AD交于点P,若∠CBD=18°,则∠P的大小为

【答案】54°
【解析】解:连接AC, ∴∠CAD=∠CBD=18°,
设∠BAC=x,
=2 =3
∴∠ABD=2∠BAC,∠ADB=2∠BAC,
∴∠ABD=3x,∠ADB=2x,
∴x+2x+3x+18°=180°,
∴x=27°,
∴∠BAD=45°,∠ABC=81°,
∴∠P=180°﹣45°﹣81°=54°,
所以答案是:54°.

【考点精析】本题主要考查了圆心角、弧、弦的关系和圆周角定理的相关知识点,需要掌握在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】2018917日世界人工智能大会在上海召开,人工智能的变革力在教育、制造等领域加速落地. 在某市举办的一次中学生机器人足球赛中,有四个代表队进入决赛,决赛中,每个队分别与其它三个队进行主客场比赛各一场(即每个队要进行6场比赛),以下是积分表的一部分.

排名

代表队

场次

(场)

(场)

(场)

(场)

净胜球

(个)

进球

(个)

失球

(个)

积分

(分)

1

A

6

1

6

12

6

22

2

B

6

3

2

1

0

6

6

19

3

C

6

3

1

2

2

9

7

17

4

D

6

0

0

6

m

5

13

0

(说明:积分=胜场积分+平场积分+负场积分)

1D代表队的净胜球数m=

2)本次决赛中,胜一场积 分,平一场积 分,负一场积 分;

3)此次竞赛的奖金分配方案为:进入决赛的每支代表队都可以获得参赛奖金6000元;另外,在决赛期间,每胜一场可以再获得奖金2000元,每平一场再获得奖金1000.

请根据表格提供的信息,求出冠军A队一共能获得多少奖金.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某车库出口处设置有“两段式栏杆”,点A是栏杆转动的支点,点E是栏杆两段的连接点,当车辆经过时,栏杆AEF升起后的位置如图1所示(图2为其几何图形).其中AB⊥BC,DC⊥BC,EF∥BC,∠EAB=150°,AB=AE=1.2m,BC=2.4m.
(1)求图2中点E到地面的高度(即EH的长. ≈1.73,结果精确到0.01m,栏杆宽度忽略不计);
(2)若一辆厢式货车的宽度和高度均为2m,这辆车能否驶入该车库?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为了对一颗倾斜的古杉树AB进行保护,需测量其长度:在地面上选取一点C,测得∠ACB=45°,AC=24m,∠BAC=66.5°,(参考数据: ≈1.414,sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30).则这颗古杉树AB的长约为(
A.7.27
B.16.70
C.17.70
D.18.18

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC的顶点A,C落在坐标轴上,且顶点B的坐标为(﹣5,2),将△ABC沿x轴向右平移得到△A1B1C1 , 使得点B1恰好落在函数y= 上,若线段AC扫过的面积为48,则点C1的坐标为(
A.(3,2)
B.(5,6)
C.(8,6)
D.(6,6)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】嘉淇准备完成题目:化简:,发现系数印刷不清楚.

(1)他把猜成3,请你化简:(3x2+6x+8)–(6x+5x2+2);

(2)他妈妈说:你猜错了,我看到该题标准答案的结果是常数.通过计算说明原题中是几?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂计划生产AB两种产品共50件,需购买甲、乙两种材料.生产一件A产品需甲种材料30千克、乙种材料10千克;生产一件B产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.

1)甲、乙两种材料每千克分别是多少元?

2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B产品不少于28件,问符合条件的生产方案有哪几种?

3)在(2)的条件下,若生产一件A产品需加工费200元,生产一件B产品需加工费300元,应选择哪种生产方案,使生产这50件产品的成本最低?(成本=材料费+加工费)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=3ax2+2bx+c.
(1)若a=b=1,c=﹣1,求抛物线与x轴公共点的坐标;
(2)若a=b=1,且当﹣1<x<1时,抛物线与x轴有且只有一个公共点,求c的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.当春分、秋分时,昼夜时长大致相等;当夏至时,白昼时长最长.如图是一年中部分节气所对应的白昼时长示意图.在下列选项中白昼时长超过13小时的节气是(
A.惊蛰
B.小满
C.秋分
D.大寒

查看答案和解析>>

同步练习册答案