精英家教网 > 初中数学 > 题目详情

【题目】如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶的MN这层上晒太阳.( 取1.73)
(1)求楼房的高度约为多少米?
(2)过了一会儿,当α=45°时,问小猫能否还晒到太阳?请说明理由.

【答案】
(1)解:当α=60°时,在Rt△ABE中,

∵tan60°= =

∴AB=10tan60°=10 ≈10×1.73=17.3米.

即楼房的高度约为17.3米;


(2)解:当α=45°时,小猫仍可以晒到太阳.理由如下:

假设没有台阶,当α=45°时,从点B射下的光线与地面AD的交点为点F,与MC的交点为点H.

∵∠BFA=45°,

∴tan45°= =1,

此时的影长AF=AB=17.3米,

∴CF=AF﹣AC=17.3﹣17.2=0.1米,

∴CH=CF=0.1米,

∴大楼的影子落在台阶MC这个侧面上,

∴小猫仍可以晒到太阳.


【解析】(1)在Rt△ABE中,由tan60°= = ,即可求出AB=10tan60°=17.3米;(2)假设没有台阶,当α=45°时,从点B射下的光线与地面AD的交点为点F,与MC的交点为点H.由∠BFA=45°,可得AF=AB=17.3米,那么CF=AF﹣AC=0.1米,CH=CF=0.1米,所以大楼的影子落在台阶MC这个侧面上,故小猫仍可以晒到太阳.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在菱形ABCD中,AB=5,AC=8,点P是对角线AC上的一个动点,过点P作EF垂直于AC交AD于点E,交AB于点F,将△AEF折叠,使点A落在点A′处,当△A′CD时等腰三角形时,AP的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在圆心角为90°的扇形OAB中,半径OA=2cm,C为 的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一条直线与反比例函数y= (x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数y= (x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为(
A.4
B.
C.5
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,A,B,C的对边分别为a、b、c,下列说法中错误的是

A.如果CB=A,则ABC是直角三角形,且C=90

B.如果,则ABC是直角三角形,且C=90

C.如果(c+a)( c-a)=,则ABC是直角三角形,且C=90

D.如果ABC325,则ABC是直角三角形,且C=90

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD的对角线交于点E,有AE=EC,BE=ED,以AB为直径的半圆过点E,圆心为O.
(1)利用图1,求证:四边形ABCD是菱形.
(2)如图2,若CD的延长线与半圆相切于点F,已知直径AB=8. ①连结OE,求△OBE的面积.
②求扇形AOE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1计算2a+12﹣(2a+1)(﹣1+2a);

2)用乘法公式计算:200222001×2003

(3)解不等式组:,并把解集在数轴上表示出来;

(4)解方程组:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1操作实践ABC中,∠A=90°B=22.5°,请画出一条直线把△ABC分割成两个等腰三角形,并标出分割成两个等腰三角形底角的度数;(要求用两种不同的分割方法)

2分类探究ABC中,最小内角∠B=24°,若△ABC被一直线分割成两个等腰三角形,请画出相应示意图并写出△ABC最大内角的所有可能值;

3猜想发现:若一个三角形能被一直线分割成两个等腰三角形,需满足什么条件?(请你至少写出两个条件,无需证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了支援灾区学校灾后重建,我校决定再次向灾区捐助床架60,课桌凳100.现计划租甲、乙两种货车共8辆,将这些物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20, 一辆乙货车可装床

10个和课桌凳10.

(1)学校安排甲、乙两种货车可一次性把这些物资运到灾区有哪几种方案?

(2)若甲种货车每辆要付运输费1200,乙种货车要付运输费1000,则学校应选择哪种方案,使运输费

最少?最少运费是多少?

查看答案和解析>>

同步练习册答案