【题目】如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.
(1)画出△A1B1C,直接写出点A1、B1的坐标;
(2)求在旋转过程中,△ABC所扫过的面积.
【答案】(1)A1(﹣1,4),B1(1,4);(2).
【解析】试题分析:(1)根据旋转中心方向及角度找出点A、B的对应点A1、B1的位置,然后顺次连接即可,根据A、B的坐标建立坐标系,据此写出点A1、B1的坐标;(2)利用勾股定理求出AC的长,根据△ABC扫过的面积等于扇形CAA1的面积与△ABC的面积和,然后列式进行计算即可.
试题解析:(1)所求作△A1B1C如图所示:
由A(4,3)、B(4,1)可建立如图所示坐标系,
则点A1的坐标为(﹣1,4),点B1的坐标为(1,4);
(2)∵AC=,∠ACA1=90°
∴在旋转过程中,△ABC所扫过的面积为:
S扇形CAA1+S△ABC
=+×3×2
=+3.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E
(1)求证:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,反比例函数y=kx-1(x>0)的图象经过点A(1,2)和点B(m,n)(m>1),过点B作y轴的垂线,垂足为C.
(1)求该反比例函数解析式;
(2)当△ABC面积为2时,求点B的坐标.
(3)P为线段AB上一动点(P不与A、B重合),在(2)的情况下,直线y=ax﹣1与线段AB交于点P,直接写出a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线 (a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:
①4ac<b2;
②方程 的两个根是x1=﹣1,x2=3;
③3a+c>0
④当y>0时,x的取值范围是﹣1≤x<3
⑤当x<0时,y随x增大而增大
其中结论正确的个数是( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC、△BDE都是等腰直角三角形,∠ABC=∠DBE=90°,连接AE、CD交于点F,连接BF.求证:
(1)AE=CD;
(2)BF平分∠AFD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列方程解应用题:
某商店在2016年至2018年期间销售一种礼盒.2016年,该商店用2200元购进了这种礼盒并且全部售完:2018年,这种礼盒每盒的进价是2016年的一半,且该商店用2100元购进的礼盒数比2016年的礼盒数多100盒.那么,2016年这种礼盒每盒的进价是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1)是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为和斜边长为图(2)是以为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个直角梯形.
(1)在图(3)处画出拼成的这个图形的示意图;
(2)利用(1)画出的图形证明勾股定理.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一块直角三角形的绿地,量得两直角边长分别为6m和8m,现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知⊙O的直径为10,点A、点B、点C在⊙O上,∠CAB的平分线交⊙O于点D.
(1)如图①,若BC为⊙O的直径,AB=6,求AC,BD的长;
(2)如图②,若∠CAB=60°,CF⊥BD,①求证:CF是⊙O的切线;②求由弦CD、CB以及弧DB围成图形的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com