精英家教网 > 初中数学 > 题目详情

【题目】有一个抛物线形的拱形桥洞,桥面离水面的距离为5.6米,桥洞离水面的最大高度为,跨度为如图所示,把它的图形放在直角坐标系中.

1)求这条抛物线所对应的函数关系式.

2)如图,在对称轴右边处,桥洞离桥面的高是多少?

【答案】1)二次函数解析式为;(2)桥洞离桥面的高是1.76米.

【解析】

1)由题意可知抛物线的顶点坐标,设函数关系式为y=ax-52+4,将已知坐标代入关系式求出a的值.
2)对称轴右边1米处即x=6,代入解析式求出y=值.

解:(1)由题意可知,抛物线的顶点坐标为

所以设此桥洞所对应的二次函数关系式为

由图象知该函数过原点,将代入上式,得:

解得

故该二次函数解析式为

2)对称轴右边1米处即,此时

因此桥洞离桥面的高米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(3,0),C(1,﹣1),ACx轴于点P.

(1)ACB的度数为_____

(2)P点坐标为______

(3)以点O为位似中心,将△ABC放大为原来的2倍,请在图中画出所有符合条件的三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰RtABCACB=90°)的直角边与正方形DEFG的边长均为2,且ACDE在同一直线上,开始时点C与点D重合,让ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为xABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则yx之间的函数关系的图象大致是(  )

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度a10m),围成中间隔有一道篱笆的长方形花圃.设花圃的宽ABxm,面积为Sm2

1)求Sx的函数关系式;

2)如果要围成面积为45m2的花圃,AB的长是多少米?

3)能围成面积比45 m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,ACBD相交于点O,点EOA的中点,连接BE并延长交AD于点F,已知SAEF=4,则下列结论:①SBCE=36;SABE=12;④△AEFACD,其中一定正确的是(  )

A. ①②③④ B. ①④ C. ②③④ D. ①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座。

1)计划到2020年底,全省5G基站的数量是多少万座?;

2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,ABC内接于⊙OAF是⊙O的弦,AFBC,垂足为D,点E为上一点,且BE=CF

1)求证:AE是⊙O的直径;

2)若∠ABC=EACAE=4,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】温州市政府计划投资百亿元开发瓯江口新区,打造出一个东方时尚岛、海上新温州.为了解温州市民对瓯江口新区的关注情况,某学校数学兴趣小组随机采访部分温州市民,对采访情况制作了统计图表的一部分如下:

关注情况

频数

频率

A.高度关注

m

0.1

B.一般关注

100

0.5

C.不关注

30

n

D.不知道

50

0.25

1)根据上述统计表可得此次采访的人数为   人;m   n   

2)根据以上信息补全条形统计图;

3)根据上述采访结果,估计25000名温州市民中高度关注瓯江口新区的市民约   人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一种进价为每件40元的T恤,若销售单价为60元,则每周可卖出300.为提高利润,欲对该T恤进行涨价销售.经过调查发现:每涨价1元,每周要少卖出10.请确定该T恤涨价后每周的销售利润y(元)与销售单价x(元)之间的函数关系式,并求销售单价定为多少元时,每周的销售利润最大?

查看答案和解析>>

同步练习册答案