【题目】已知:如图,△ABC内接于⊙O,AF是⊙O的弦,AF⊥BC,垂足为D,点E为上一点,且BE=CF,
(1)求证:AE是⊙O的直径;
(2)若∠ABC=∠EAC,AE=4,求AC的长.
【答案】(1)见解析;(2)AC=2.
【解析】
(1)由BE=CF,则可证得∠BAE=∠FAC,根据圆周角定理和等角的余角相等证明即可;
(2)连接OC,根据圆周角定理证明△AOC是等腰直角三角形,由勾股定理即可求得.
(1)证明:∵BE=CF,
∴ ,
∴∠BAE=∠CAF,
∵AF⊥BC,
∴∠ADC=90°,
∴∠FAC+∠ACD=90°,
∵∠E=∠ACD,
∴∠BAE+∠E=90°,
∴∠ABE=90°,
∴ AE是⊙O的直径 .
(2)解:连结OC,
∴∠AOC=2∠ABC,
∵∠ABC=∠CAE,
∴∠AOC=2∠CAE,
∵OA=OA,
∴∠CAO=∠ACO=∠AOC,
∴△AOC为等腰直角三角形,
∵AE=4,
∴AO=CO=2,
∴AC=.
科目:初中数学 来源: 题型:
【题目】我市某童装专卖店在销售中发现,一款童装每件进价为40元,若销售价为60元,每天可售出20件,为迎接“双十一”,专卖店决定采取适当的降价措施,以扩大销售量,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件设每件童装降价x元时,平均每天可盈利y元.
写出y与x的函数关系式;
当该专卖店每件童装降价多少元时,平均每天盈利400元?
该专卖店要想平均每天盈利600元,可能吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线L:交x轴与点A,交y轴与点B,点C在x轴正半轴上,且OC=2,点D在线段AC上,且∠CDB=∠ABC,过点C作BC的垂线,交BD的延长线与点E,并联结AE
(1)求证:△CDB∽△CBA
(2)求点E的坐标
(3)若点P是直线CE上的一动点,联结DP若△DEP和△ABC相似,求点P的坐标
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一个抛物线形的拱形桥洞,桥面离水面的距离为5.6米,桥洞离水面的最大高度为,跨度为,如图所示,把它的图形放在直角坐标系中.
(1)求这条抛物线所对应的函数关系式.
(2)如图,在对称轴右边处,桥洞离桥面的高是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+2的图象交x轴于点A(﹣1,0),点B(4,0)两点,交y轴于点C.动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.
(1)求二次函数y=ax2+bx+2的表达式;
(2)连接BD,当t=时,求△DNB的面积;
(3)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线的对称轴为直线,与轴的一个交点在和之间,其部分图象如图所示.则下列结论:①;②;③;④(为实数);⑤点,,是该抛物线上的点,则,正确的个数有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.
(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B= °;
(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.
(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“准互余三角形”,求对角线AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,AB∥CD,∠B=90°,AB=1,CD=2,BC=m,点P是边BC上一动点,若△PAB与△PCD相似,且满足条件的点P恰有2个,则m的值为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知A(2,0)、B(3,1)、C(1,3).
(1)画出△ABC沿x轴负方向平移2个单位后得到的△A1B1C1,并写出B1的坐标 ;
(2)以A1点为旋转中心,将△A1B1C1逆时针方向旋转90°得△A1B2C2,画出△A1B2C2,并写出C2的坐标 ;
(3)直接写出过B、B1、C2三点的圆的圆心坐标为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com