【题目】如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;
(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.
【答案】
(1)
解:∵抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),
∴
解得:
∴所求抛物线解析式为:
y=﹣x2﹣2x+3
(2)
解:∵抛物线解析式为:
y=﹣x2﹣2x+3,
∴其对称轴为x= =﹣1,
∴设P点坐标为(﹣1,a),当x=0时,y=3,
∴C(0,3),M(﹣1,0)
∴当CP=PM时,(﹣1)2+(3﹣a)2=a2,解得a= ,
∴P点坐标为:P1(﹣1, );
∴当CM=PM时,(﹣1)2+32=a2,解得a=± ,
∴P点坐标为:P2(﹣1, )或P3(﹣1,﹣ );
∴当CM=CP时,由勾股定理得:(﹣1)2+32=(﹣1)2+(3﹣a)2,解得a=6,
∴P点坐标为:P4(﹣1,6)
综上所述存在符合条件的点P,其坐标为P(﹣1, )或P(﹣1,﹣ )
或P(﹣1,6)或P(﹣1, )
(3)
解:过点E作EF⊥x轴于点F,设E(a,﹣a2﹣2a+3)(﹣3<a<0)
∴EF=﹣a2﹣2a+3,BF=a+3,OF=﹣a
∴S四边形BOCE= BFEF+ (OC+EF)OF
= (a+3)(﹣a2﹣2a+3)+ (﹣a2﹣2a+6)(﹣a)
=
= +
∴当a=﹣ 时,S四边形BOCE最大,且最大值为 .
此时,点E坐标为(﹣ , ).
【解析】(1)已知抛物线过A、B两点,可将两点的坐标代入抛物线的解析式中,用待定系数法即可求出二次函数的解析式;(2)可根据(1)的函数解析式得出抛物线的对称轴,也就得出了M点的坐标,由于C是抛物线与y轴的交点,因此C的坐标为(0,3),根据M、C的坐标可求出CM的距离.然后分三种情况进行讨论:①当CP=PM时,P位于CM的垂直平分线上.求P点坐标关键是求P的纵坐标,过P作PQ⊥y轴于Q,如果设PM=CP=x,那么直角三角形CPQ中CP=x,OM的长,可根据M的坐标得出,CQ=3﹣x,因此可根据勾股定理求出x的值,P点的横坐标与M的横坐标相同,纵坐标为x,由此可得出P的坐标.②当CM=MP时,根据CM的长即可求出P的纵坐标,也就得出了P的坐标(要注意分上下两点).③当CM=CP时,因为C的坐标为(0,3),那么直线y=3必垂直平分PM,因此P的纵坐标是6,由此可得出P的坐标;(3)由于四边形BOCE不是规则的四边形,因此可将四边形BOCE分割成规则的图形进行计算,过E作EF⊥x轴于F,四边形BOCE的面积=三角形BFE的面积+直角梯形FOCE的面积.直角梯形FOCE中,FO为E的横坐标的绝对值,EF为E的纵坐标,已知C的纵坐标,就知道了OC的长.在三角形BFE中,BF=BO﹣OF,因此可用E的横坐标表示出BF的长.如果根据抛物线设出E的坐标,然后代入上面的线段中,即可得出关于四边形BOCE的面积与E的横坐标的函数关系式,根据函数的性质即可求得四边形BOCE的最大值及对应的E的横坐标的值.即可求出此时E的坐标.
【考点精析】关于本题考查的二次函数的图象和二次函数的性质,需要了解二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】阅读理解:
我们知道,任意两点关于它们所连线段的中点成中心对称,在平面直角坐标系中,任意两点P(x1,y1)、Q(x2,y2)的对称中心的坐标为(,).
观察应用:
(1)如图,在平面直角坐标系中,若点P1(0,﹣1)、P2(2,3)的对称中心是点A,则点A的坐标为 ;
(2)另取两点B(﹣1.6,2.1)、C(﹣1,0).有一电子青蛙从点P1处开始依次关于点A、B、C作循环对称跳动,即第一次跳到点P1关于点A的对称点P2处,接着跳到点P2关于点B的对称点P3处,第三次再跳到点P3关于点C的对称点P4处,第四次再跳到点P4关于点A的对称点P5处,…则点P3、P8的坐标分别为 、 .
拓展延伸:
(3)求出点P2012的坐标,并直接写出在x轴上与点P2012、点C构成等腰三角形的点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知数轴上点对应的数为6,是数轴上点左边的一点,=10,动点从点出发,沿着数轴正方向向右匀速运动,若是的中点,是的中点,点在运动过程中,线段的长度是否发生变化?若有变化,说明理由;若没有变化,请求出的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,AB=AC,D,E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论: ①△AED≌△AEF;
②△ABE∽△ACD;
③BE+DC=DE;
④BE2+DC2=DE2 .
其中一定正确的是( )
A.②④
B.①③
C.①④
D.②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司到果园基地购买某种优质水果,慰问医务工作者,果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案,甲方案:每千克9元,由基地送货上门.乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元.
(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果质量x(千克)之间的函数关系式,并写出自变量x的取值范围.
(2)依据购买量判断,选择哪种购买方案付款最少?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列调查中,调查方式选择不合理的是
A. 调查我国中小学生观看电影厉害了,我的国情况,采用抽样调查的方式
B. 调查全市居民对“老年餐车进社区”活动的满意程度,采用抽样调查的方式
C. 调查“神州十一号”运载火箭发射前零部件质量状况,采用全面调查普查的方式
D. 调查市场上一批LED节能灯的使用寿命,采用全面调查普查的方式
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙D的直径,AD切⊙D于点A,EC=CB.则下列结论:①BA⊥DA; ②OC∥AE;③∠COE=2∠CAE;④OD⊥AC.一定正确的个数有( )
A.4个
B.3个
C.2个
D.1个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com