精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,菱形ABCD的对角线AC,BD相交于O,点E,F分别是AD,DC的中点,已知OE=,EF=3,求菱形ABCD的周长和面积.

【答案】20,24

【解析】

首先由菱形ABCD的对角线ACBD相交于OEF分别是ADDC的中点根据直角三角形斜边上的中线等于斜边的一半可求得AD的长由三角形中位线定理可求得AC的长进而可求出菱形的周长再求出BD的长即可求出菱形的面积.

∵菱形ABCD的对角线ACBD相交于点OACBDOA=OCOB=OD

∵点EF分别是ADDC的中点OE=ADEF=AC

OE=2.5EF=3AD=5AC=6∴菱形ABCD的周长为4×5=20

AO=AC=3AD=5DO==4BD=2DO=8∴菱形ABCD的面积=ACBD=24

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】有理数a,b,c在数轴上的位置如图所示,且|a|=|c|.

(1)若|a+c|+|b|=2,求b的值;

(2)用“>”从大到小把a,b,﹣b,c连接起来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列文字:

我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如由图1可以得到(a+2b)(a+b)=a2+3ab+2b2.请解答下列问题:

(1)写出图2中所表示的数学等式_____;

(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;

(3)图3中给出了若干个边长为a和边长为b的小正方形纸片及若干个边长分别为a、b的长方形纸片,

请按要求利用所给的纸片拼出一个几何图形,并画在图3所给的方框中,要求所拼出的几何图形的面积为2a2+5ab+2b2

再利用另一种计算面积的方法,可将多项式2a2+5ab+2b2分解因式.即2a2+5ab+2b2=______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系xOy中,抛物线y=ax2+1经过点A(4,﹣3),顶点为点B,点P为抛物线上的一个动点,l是过点(0,2)且垂直于y轴的直线,过P作PH⊥l,垂足为H,连接PO.
(1)求抛物线的解析式,并写出其顶点B的坐标;
(2)①当P点运动到A点处时,计算:PO= , PH= , 由此发现,POPH(填“>”、“<”或“=”);
②当P点在抛物线上运动时,猜想PO与PH有什么数量关系,并证明你的猜想;
(3)如图2,设点C(1,﹣2),问是否存在点P,使得以P,O,H为顶点的三角形与△ABC相似?若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:

组别

成绩x(分)

频数(人数)

频率

50≤x<60

2

0.04

60≤x<70

10

0.2

70≤x<80

14

b

80≤x<90

a

0.32

90≤x<100

8

0.16

请根据表格提供的信息,解答以下问题:
(1)本次决赛共有名学生参加;
(2)直接写出表中a= , b=
(3)请补全下面相应的频数分布直方图;

(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一个两位数恰等于它的各位数字之和的则这个两位数称为巧数”.不是巧数的两位数有______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】折叠三角形纸片ABC,使点A落在BC边上的点F,且折痕DEBC,若∠A=75°,C=60°,则∠BDF=____________________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,PQ分别是BCAC上的点,作PR⊥ABPS⊥AC,垂足分别是RS,若AQ=PQPR=PS,下面四个结论:①AS=AR②QP∥AR③△BRP≌△QSP④AP垂直平分RS.其中正确结论的序号是 (请将所有正确结论的序号都填上).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列四组线段中,可以组成直角三角形的是(  )

A. 4,5,6 B. 3,4,5 C. 5,6,7 D. 1,,3

查看答案和解析>>

同步练习册答案