精英家教网 > 初中数学 > 题目详情

【题目】有理数a,b,c在数轴上的位置如图所示,且|a|=|c|.

(1)若|a+c|+|b|=2,求b的值;

(2)用“>”从大到小把a,b,﹣b,c连接起来.

【答案】(1)-2;(2)见解析.

【解析】试题分析:(1)由a、c之间的位置关系结合|a|=|c|可得出a+c=0,由b在数轴上的位置结合|a+c|+|b|=2可得出b的值;

(2)将﹣b标记在数轴上,结合数轴即可得出a>﹣b>b>c.

试题解析:解:(1)∵|a|=|c|,且a,c分别在原点的两旁,

∴a,c互为相反数,即a+c=0.

∵|a+c|+|b|=2,

∴|b|=2,

∴b=±2.

∵b在原点左侧,

∴b=﹣2.

(2)将﹣b标记在数轴上,如图所示.

∴a>﹣b>b>c.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB=AC,CDABD,BEACE,BECD相交于点O.

(1)求证:AD=AE;

(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C的度数为(  )

A.50°
B.40°
C.30°
D.20°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学计划购进甲、乙两种学具,已知一件甲种学具的进价与一件乙种学具的进价的和为40元,用90元购进甲种学具的件数与用150元购进乙种学具的件数相同.

求每件甲种、乙种学具的进价分别是多少元?

该学校计划购进甲、乙两种学县共100件,此次进货的总资金不超过2000元,求最少购进甲种玩具多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有理数 abc 在数轴上的位置如图所示:

(1)比较 a、|b|、c 的大小(用“<”连接);

(2)若 m=|a+b|﹣|b﹣1|﹣|ac|,求 1﹣2013(m+c)2013 的值;

(3) a=﹣2,b=﹣3,c abc 对应的点分别为 ABC问在数轴上是否存在一点 P,使 P A 的距离是 P C 的距离的 3 倍?若存在,请求出 P 点对应的有理数;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ADBEABC的角平分线,DE分别在BCAC上,若AD=ABBE=BC,则∠C=(  )

A. 69° B. C. D. 不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将一个等腰Rt△ABC对折,使∠A与∠B重合,展开后得折痕CD,再将∠A折叠,使C落在AB上的点F处,展开后,折痕AE交CD于点P,连接PF、EF,下列结论:①tan∠CAE=﹣1;②图中共有4对全等三角形;③若将△PEF沿PF翻折,则点E一定落在AB上;④PC=EC;⑤S四边形DFEP=S△APF.正确的个数是(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究

问题1 已知:如图1,三角形ABC中,点DAB边的中点,AE⊥BC,BF⊥AC,垂足分别为点E,F,AE,BF交于点M,连接DE,DF.若DE=kDF,则k的值为   

拓展

问题2 已知:如图2,三角形ABC中,CB=CA,点DAB边的中点,点M在三角形ABC的内部,且∠MAC=∠MBC,过点M分别作ME⊥BC,MF⊥AC,垂足分别为点E,F,连接DE,DF.求证:DE=DF.

推广

问题3 如图3,若将上面问题2中的条件“CB=CA”变为“CB≠CA”,其他条件不变,试探究DEDF之间的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,菱形ABCD的对角线AC,BD相交于O,点E,F分别是AD,DC的中点,已知OE=,EF=3,求菱形ABCD的周长和面积.

查看答案和解析>>

同步练习册答案