精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,AB=3,AD=10,将MPN的顶点P在矩形ABCD的边AD上滑动,在滑动过程中,始终保持MPN=90°,射线PN经过点C,射线PM交直线AB于点E,交直线BC于点F.

(1)求证:AEP∽△DPC;

(2)在点P的运动过程中,点E与点B能重合吗?如果能重合,求DP的长;

(3)是否存在这样的点P使DPC的面积等于AEP面积的4倍?若存在,求出AP的长;若不存在,请证明理由.

【答案】(1)证明详见解析;(2)点E与点B能重合,B,E重合时DP的长为1或9;(3) 存在满足条件的点P,AP=1.5.

【解析】

试题分析:(1)根据矩形的性质,推出D=A=90°,再由直角三角形的性质,得出PCD+DPC=90°,又因CPE=90°,推出EPA+DPC=90°,PCD=EPA,从而证明CDP∽△PAE;

(2)利用当B,E重合时,利用已知得出ABPDPC,进而求出DP的长即可;

(3)假设存在满足条件的点P,设DP=x,则AP=10﹣x,由CDP∽△PAE知,求出DP即可.

试题解析:(1)四边形ABCD是矩形,

∴∠D=A=90°,CD=AB=6,

∴∠PCD+DPC=90°,

∵∠CPE=90°,

∴∠EPA+DPC=90°,

∴∠PCD=EPA,

∴△AEP∽△DPC

(2)假设在点P的运动过程中,点E能与点B重合,

当B,E重合时,

∵∠BPC=90°,

∴∠APB+DPC=90°,

∵∠DPC+DCP=90°,

∴∠DCP=APB,

∵∠A=D,

∴△ABPDPC,

解得:DP=1或9,

B,E重合时DP的长为1或9;

(3)存在满足条件的点P,

∵△CDP∽△PAE,

根据使DPC的面积等于AEP面积的4倍,得到两三角形的相似比为2,

=2,

=2,

解得AP=1.5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】综合题。
(1)计算:﹣14﹣16÷(﹣2)3+|﹣ |×(1﹣0.5)
(2)化简:4xy﹣3y2﹣3x2+xy﹣3xy﹣2x2﹣4y2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下表是某校九年级(1)20名学生某次数学测验的成绩统计表:

成绩()

60

70

80

90

100

人数()

1

5

x

y

2

(1)若这20名学生成绩的平均分数为82分,求xy的值;

(2)(1)的条件下,设这20名学生本次测验成绩的众数为a,中位数为b,求ab的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为培养学生养成良好的爱读书,读好书,好读书的习惯,我市某中学举办了汉字听写大赛,准备为获奖同学颁奖.在购买奖品时发现,一个书包和一本词典会花去48元,用124元恰好可以购买3个书包和2本词典.

1)每个书包和每本词典的价格各是多少元?

2)学校计划总费用不超过900,为获胜的40名同学颁发奖品(每人一个书包或一本词典),求最多可以购买多少个书包?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】方程2x(x-1)=12+x(2x-5)的解是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若代数式x2+(2a-6)xy+y2+9中不含xy项,则a=________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式1﹣ ,并把解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面的计算正确的是(  )

A. a3a2a6B. 5aa5C. (﹣a32a6D. a32a5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某服装点用6000购进A,B两种新式服装,按标价售出后可获得毛利润3800元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示.

类型
价格

A型

B型

进价(元/件)

60

100

标价(元/件)

100

160


(1)求这两种服装各购进的件数;
(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?

查看答案和解析>>

同步练习册答案