【题目】如图,,点是线段的一个三等分点,以点为圆心,为半径的圆交于点,交于点,连接
(1)求证:是的切线;
(2)点为上的一动点,连接.
①当 时,四边形是菱形;
②当 时,四边形是矩形.
【答案】(1)见解析;(2)①60°,②120°.
【解析】
(1)连接,由,得到为等边三角形,得到,即可得到,则结论成立;
(2)①连接BD,由圆周角定理,得到∠ABD=30°,则∠DBE=60°,又有∠BEP=120°,根据同旁内角互补得到PE//DB,然后证明,即可得到答案;
②由圆周角定理,得∠ABD=60°,得到∠EBD=90°,然后由直径所对的圆周角为90°,得到,即可得到答案.
证明:连接,
,
.
,
为等边三角形,
.
点是的三等分点,
,
,
,即,
是的切线.
(2)①当时,四边形是菱形;
如图,连接BD,
∵,
∴,
∴,
∵AB为直径,则∠AEB=90°,
由(1)知,
∴,
∴,
∴PE//DB,
∵,,
∴,
∴四边形是菱形;
故答案为:60°.
②当时,四边形是矩形.
如图,连接AE、AD、DB,
∵,
∴,
∴,
∵AB是直径,
∴,
∴四边形是矩形.
故答案为:.
科目:初中数学 来源: 题型:
【题目】有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.
(1)随机抽取一张卡片,则抽到数字“2”的概率是___________;
(2)从四张卡片中随机抽取2张卡片,请用列表或画树状图的方法求抽到“数字和为5”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒,设P、Q同时出发t秒时,△BPQ的面积为ycm2,已知y与t的函数关系图象如图2所示,请回答:
(1)线段BC的长为 cm.
(2)当运动时间t=2.5秒时,P、Q之间的距离是 cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点、在直线上,且,于点,且,以为直径在的左侧作半圆,于,且.
(1)若半圆上有一点,则的最大值为________;
(2)向右沿直线平移得到;
①如图,若截半圆的的长为,求的度数;
②当半圆与的边相切时,求平移距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正方形ABCD中,AB=6,点P是射线BC上的一动点,过点P作PE⊥PA交直线CD于E,连AE.
(1)如图1,若BP=2,求DE的长;
(2)如图2,若AP平分∠BAE,连PD,求tan∠DPE的值;
(3)直线PD,AE交于点F,若BC=4PC,则= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,AB、CD是圆O的两条弦,交点为P.连接AD、BC. OM⊥ AD,ON⊥BC,垂足分别为M、N.连接PM、PN.
图1 图2
(1)求证:△ADP ∽△CBP;
(2)当AB⊥CD时,探究PMO与PNO的数量关系,并说明理由;
(3)当AB⊥CD时,如图2,AD=8,BC=6, ∠MON=120°,求四边形PMON的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为数学实验“先行示范校”,一数学活动小组带上高度为1.5m的测角仪BC,对建筑物AO进行测量高度的综合实践活动,如图,在BC处测得直立于地面的AO顶点A的仰角为30°,然后前进40m至DE处,测得顶点A的仰角为75°.
(1)求∠CAE的度数;
(2)求AE的长(结果保留根号);
(3)求建筑物AO的高度(精确到个位,参考数据:,).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线:沿轴翻折得到抛物线.
(1)求抛物线的顶点坐标;
(2)横、纵坐标都是整数的点叫做整点.
① 当时,求抛物线和围成的封闭区域内(包括边界)整点的个数;
② 如果抛物线C1和C2围成的封闭区域内(包括边界)恰有个整点,求m取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在同一平面内,将两个全等的等腰直角三角形和摆放在一起,为公共顶点,,若固定不动,绕点旋转,、与边的交点分别为、(点不与点重合,点不与点重合).
(1)求证:;
(2)在旋转过程中,试判断等式是否始终成立,若成立,请证明;若不成立,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com