【题目】在平面直角坐标系中,点 , ,将直线平移与双曲线在第一象限的图象交于、两点.
(1)如图1,将绕逆时针旋转得与对应,与对应),在图1中画出旋转后的图形并直接写出、坐标;
(2)若,
①如图2,当时,求的值;
②如图3,作轴于点,轴于点,直线与双曲线有唯一公共点时,的值为 .
【答案】(1)作图见解析,,;(2)①k=6;②.
【解析】
(1)根据题意,画出对应的图形,根据旋转的性质可得,,从而求出点E、F的坐标;
(2)过点作轴于,过点作轴于,过点作于,根据相似三角形的判定证出,列出比例式,设,根据反比例函数解析式可得(Ⅰ);
①根据等角对等边可得,可列方程(Ⅱ),然后联立方程即可求出点D的坐标,从而求出k的值;
②用m、n表示出点M、N的坐标即可求出直线MN的解析式,利于点D和点C的坐标即可求出反比例函数的解析式,联立两个解析式,令△=0即可求出m的值,从而求出k的值.
解:(1)点 , ,
,,
如图1,
由旋转知,,,,
点在轴正半轴上,点在轴负半轴上,
,;
(2)过点作轴于,过点作轴于,过点作于,
,,
,
,
,
,
,
,
,
,
,,,
,,
,
设,
,
,,
点,在双曲线上,
,
(Ⅰ)
①,
,
,
,
(Ⅱ),
联立(Ⅰ)(Ⅱ)解得:,,
;
②如图3,
,,
,,
,
,
直线的解析式为(Ⅲ),
双曲线(Ⅳ),
联立(Ⅲ)(Ⅳ)得:,
即:,
△,
直线与双曲线有唯一公共点,
△,
△,
(舍或,
,
.
故答案为:.
科目:初中数学 来源: 题型:
【题目】已知,抛物线y=x2﹣x+2与直线y=x﹣2的图象如图,点P是抛物线上的一个动点,则点P到直线y=x﹣2的最短距离为( )
A.B.C.2D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某小组做“用频率估计概率”的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是( )
A. 抛一枚硬币,出现正面朝上
B. 掷一个正六面体的骰子,出现3点朝上
C. 一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃
D. 从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一元二次方程x2+2x﹣3=0的二根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x轴的两个交点B,C的横坐标,且此抛物线过点A(3,6).
(1)求此二次函数的解析式;
(2)写出不等式ax2+bx+c≥0的解集;
(3)设此抛物线的顶点为P,对称轴与线段AC相交于点Q,求点P和点Q的坐标;
(4)在x轴上有一动点M,当MQ+MA取得最小值时,求M点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律,则第(n)个图形中面积为1的正方形的个数为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某企业设计了一款工艺品,每件成本40元,出于营销考虑,要求每件售价不得低于40元,但物价部门要求每件售价不得高于60元.据市场调查,销售单价是50元时,每天的销售量是100件,而销售单价每涨1元,每天就少售出2件,设单价上涨元.
(1)求当为多少时每天的利润是1350元?
(2)设每天的销售利润为,求销售单价为多少元时,每天利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知Rt△ACE中,∠AEC=90°,CB平分∠ACE交AE于点B,AC边上一点O,⊙O经过点B、C,与AC交于点D,与CE交于点F,连结BF。
(1)求证:AE是⊙O的切线;
(2)若,AE=8,求⊙O的半径;
(3)在(2)条件下,求BF的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC,直线PQ垂直平分AC,与边AB交于点E,连接CE,过点C作CF∥BA交PQ于点F,连接AF.
(1)求证:△AED≌△CFD;
(2)求证:四边形AECF是菱形.
(3)若ED=6,AE=10,则菱形AECF的面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线对称轴DE交x轴于点E,连接BD.
(1)求经过A,B,C三点的抛物线的函数表达式;
(2)点P是线段BD上一点,当PE=PC时,求点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com