【题目】在平面直角坐标系xOy中,抛物线与y轴交于C点,与x轴交于A,B两点(点A在点B左侧),且点A的横坐标为-1.
(1)求a的值;
(2)设抛物线的顶点P关于原点的对称点为,求点的坐标;
(3)将抛物线在A,B两点之间的部分(包括A, B两点),先向下平移3个单位,再向左平移m()个单位,平移后的图象记为图象G,若图象G与直线无交点,求m的取值范围.
科目:初中数学 来源: 题型:
【题目】某汽车油箱的容积为升,小王把该车的油箱加满,从县城驾驶汽车到千米外的省城接客人,接到客人后立即按原路返回.请回答下列问题:
(1)油箱加满后,汽车能够行驶的总路程(单位:千米)与平均耗油量(单位:升/千米)之间有怎样的函数关系?
(2)小王驾驶汽车去省城,平均每千米耗油升.返程时由于下雨,小王降低了车速,此时平均耗油量增加了一倍.小王不加油能否驾车回到县城?如果不能,至少还需加多少油才能保证回到县城?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数
(1)当k=3时,求函数图像与x轴的交点坐标;
(2)函数图像的对称轴与原点的距离为3,求k的值
(3)设二次函数图像上的一点P(x,y)满足时,y≤2,求k的取值范围。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为菱形,M为BC上一点,连接AM交对角线BD于点G,并且∠ABM=2∠BAM.
(1)求证:AG=BG;
(2)若点M为BC的中点,同时S△BMG=1,求三角形ADG的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是( )
A. b2>4ac
B. ax2+bx+c≥﹣6
C. 若点(﹣2,m),(﹣5,n)在抛物线上,则m>n
D. 关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1, 0)、C(3, 0)、D(3, 4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,以每秒个单位的速度沿线段AD向点D运动,运动时间为t秒.过点P作PE⊥x轴交抛物线于点M,交AC于点N.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)当t为何值时,△ACM的面积最大?最大值为多少?
(3)点Q从点C出发,以每秒1个单位的速度沿线段CD向点D运动,当t为何值时,在线段PE上存在点H,使以C、Q、N、H为顶点的四边形为菱形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数的顶点是直线和直线的交点.
(1)用含的代数式表示顶点的坐标.
(2)①当时,的值均随的增大而增大,求的取值范围.
②若,且满足时,二次函数的最小值为,求的取值范围.
(3)试证明:无论取任何值,二次函数的图象与直线总有两个不同的交点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠ABC=∠BCD=90°,点E为BC的中点,AE⊥DE.
(1)求证:△ABE∽△ECD;
(2)求证:AE2=AB·AD;
(3)若AB=1,CD=4,求线段AD,DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于下列结论:①二次函数y=6x2,当x>0时,y随x的增大而增大;②关于x的方程a(x+m)2+b=0的解是x1=﹣2,x2=1(a、m、b均为常数,a≠0),则方程a(x+m+2)2+b=0的解是x1=﹣4,x2=﹣1;③设二次函数y=x2+bx+c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是c≥3.其中,正确结论的个数是( )
A. 0个 B. 1个 C. 2个 D. 3个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com