精英家教网 > 初中数学 > 题目详情

【题目】如图,在四边形ABCD中,∠BAC90°EBC的中点,ADBCAEDCEFCD于点F.

(1)求证:四边形AECD是菱形;

(2)AB6BC10,求EF的长.

【答案】(1)证明见解析;(2) EF=.

【解析】

1)根据平行四边形和菱形的判定证明即可;

2)根据菱形的性质和三角形的面积公式解答即可.

(1)证明:∵ADBCAEDC

∴四边形AECD是平行四边形.

∵在RtABC中,∠BAC90°EBC的中点,

BEECAE.

∴四边形AECD是菱形.

(2)解:如图,过点AAHBC于点H.

RtABC中,∠BAC90°AB6BC10,由勾股定理得AC8.

再根据面积关系,有SABCBC·AHAB·AC

AH.

∵点EBC的中点,BC10,四边形AECD是菱形,

CDCE5.

S菱形AECDCD·EFCE·AH

EFAH.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1是一个三棱柱包装盒,它的底面是边长为10cm的正三角形,三个侧面都是矩形.现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABCD(如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.在图3中,将三棱柱沿过点A的侧棱剪开,得到如图4的侧面展开图.为了得到裁剪的角度,我们可以根据展开图拼接出符合条件的平行四边形进行研究.

(1)请在图4中画出拼接后符合条件的平行四边形;
(2)请在图2中,计算裁剪的角度(即∠ABM的度数).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知平行四边形ABCD,对角线ACBD相交于点OOBC=OCB

(1)求证:平行四边形ABCD是矩形;

(2)请添加一个条件使矩形ABCD为正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=120°,AB=4cm,两等圆⊙A与⊙B外切,则图中两个扇形(即阴影部分)的面之和为cm2 . (结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查.被调查的每个学生按A(非常喜欢)、B(比较喜欢)、C(一般)、D(不喜欢)四个等级对活动评价.图(1)和图(2)是该小组采集数据后绘制的两幅统计图.经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息,解答下列问题:

(1)此次调查的学生人数为
(2)条形统计图中存在错误的是(填A,B,C中的一个),并在图中加以改正;
(3)在图(2)中补画条形统计图中不完整的部分;
(4)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以下叙述正确的有(

①对顶角相等;②同位角相等;③两直角相等;④邻补角相等;⑤多边形的外角和都相等;⑥三角形的中线把原三角形分成面积相等的两个三角形

A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,分别以AB、AD为边向外作等边ABE、ADF,延长CBAE于点G,点G在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确的是:①△CDF≌△EBC;②∠CDF=EAF;③△ECF是等边CGAE(  )

A. 只有①② B. 只有①②③ C. 只有③④ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,M是ABC的边BC的中点,AN平分BAC,BNAN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3

(1)求证:BN=DN;

(2)求ABC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DAC+∠ACB=180°EF//BCCE平分BCFDAC=3∠BCFACF=20°,则FEC的度数是(  )

A.10°B.20°C.15°D.30°

查看答案和解析>>

同步练习册答案