【题目】如图1是一个三棱柱包装盒,它的底面是边长为10cm的正三角形,三个侧面都是矩形.现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABCD(如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.在图3中,将三棱柱沿过点A的侧棱剪开,得到如图4的侧面展开图.为了得到裁剪的角度,我们可以根据展开图拼接出符合条件的平行四边形进行研究.![]()
![]()
(1)请在图4中画出拼接后符合条件的平行四边形;
(2)请在图2中,计算裁剪的角度(即∠ABM的度数).
【答案】
(1)解:如图所示:
![]()
(2)解:由图2的包贴方法知:AB的长等于三棱柱的底边周长,
∴AB=30.
∵纸带宽为15,
∴sin∠ABM=
,
∴∠ABM=30°.
【解析】(1)首先将图4中的△ABE向左平移30cm,然后再将△CDF向右平移30cm即可;
(2)根据AB的长等于三棱柱的底边周长可求得AB=30cm,由纸带的宽为15cm,最后,依据特殊锐角三角函数值可求得∠AMB=30°.
【考点精析】解答此题的关键在于理解几何体的展开图的相关知识,掌握沿多面体的棱将多面体剪开成平面图形,若干个平面图形也可以围成一个多面体;同一个多面体沿不同的棱剪开,得到的平面展开图是不一样的,就是说:同一个立体图形可以有多种不同的展开图,以及对平行四边形的性质的理解,了解平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分.
科目:初中数学 来源: 题型:
【题目】关于x的一元二次方程x2﹣3x﹣k=0有两个不相等的实数根.
(1)求k的取值范围;
(2)若这个方程有一个根为﹣2,求k的值和方程的另一个根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】乐乐和数学小组的同学们研究了如下问题,请你也来试一下吧.
点
是直线
上一点,在同一平面内,乐乐他们把一个等腰直角三角板
任意放,其中直角顶点
与点
重合,过点
作直线
,垂足为点
,从过点
作
,垂足为点
.
(1)当直线
,
位于点
的异侧时,如图1,线段
,
,
之间的数量关系___(不必说明理由);
(2)当直线
,
位于点
的右侧时,如图2,判断线段
,
,
之间的数量系,并说明理由;
(3)当直线
,
位于点
的左侧时,如图3,请你补全图形,并直接写出线段
,
,
之间的数量关系.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)我们已经知道,根据几何图形的面积关系可以说明完全平方公式,说明如下:如图1.正方形
的面积=正方形
的面积+(长方形
+长方形
的面积)+正方形
的面积.即:
.
(2)还有一些等式也可以用上述方式加以说明,请你尝试完成.如图2,长方形
的面积=长方形
的面积+长方形
的面积-长方形
的面积-________的面积,即
________________.
(3)计算
=______________.依照上述方法,画图并说明.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某段铁路两旁安置了两座可旋转探照灯,主道路是平行,即PQ∥MN. 如图所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度. 若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动_________秒,两灯的光束互相平行.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD边长为4,点P从点A运动到点B,速度为1,点Q沿B﹣C﹣D运动,速度为2,点P、Q同时出发,则△BPQ的面积y与运动时间t(t≤4)的函数图象是( )![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知数轴上点
表示的数为8,
是数轴上位于点
左侧一点,且
,动点
从
点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为
秒.
(1)数轴上点
表示的数是___________;点
表示的数是___________(用含
的代数式表示)
(2)动点
从点
出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点
同时出发,问多少秒时
之间的距离恰好等于2?
(3)若
为
的中点,
为
的中点,在点
运动的过程中,线段
的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段
的长.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(
,0),有下列结论:①abc>0;
②a﹣2b+4c=0; ③25a﹣10b+4c=0; ④3b+2c>0; ⑤a﹣b≥m(am﹣b);
其中所有正确的结论是( )![]()
A.①②③
B.①③④
C.①②③⑤
D.①③⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.
(1)求证:四边形AECD是菱形;
(2)若AB=6,BC=10,求EF的长.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com