【题目】抛物线经过点,且对称轴为直线,其部分图象如图所示. 对于此抛物线有如下四个结论:
①;②;
③若,则时的函数值小于时的函数值;
④点不在此抛物线上. 其中正确结论的序号是( )
A.①②B.②③C.②④D.③④
【答案】B
【解析】
利由抛物线的位置可对①进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(4,0),代入解析式则可对②进行判断;由抛物线的对称性和二次函数的增减性可对③进行判断;抛物线的对称性得出点(-2,0)的对称点是(4,0),由c=-8a 即可得出- =4,则可对④进行判断.
∵抛物线开口向下,
∴a<0,
∵抛物线交y轴的正半轴,
∴c>0,
∴ac<0,
故①错误;
∵抛物线的对称轴为直线x=1,
而点(-2,0)关于直线x=1的对称点的坐标为(4,0),
∴16a+4b+c=0,
故②正确;
∵抛物线开口向下,对称轴为直线x=1,
∴当x>1时,y随x的增大而减小,
∵若m>n>0,
∴1+m>1+n,
∴x=1+m时的函数值小于x=1+n时的函数值,
∵横坐标是1-n的点的对称点的横坐标为1+n,
∴x=1+n时的函数值等于x=1-n时的函数值,
∴x=1+m时的函数值小于x=1-n时的函数值,
故③正确;
∵抛物线的对称轴为- =1,
∴b=-2a,
∴抛物线为y=ax2-2ax+c,
∵抛物线y=ax2+bx+c经过点(-2,0),
∴4a+4a+c=0,即8a+c=0,
∴c=-8a,
∴- =4,
∵点(-2,0)的对称点是(4,0),
∴点(- ,0)一定在此抛物线上,
故④错误.
故选:B.
科目:初中数学 来源: 题型:
【题目】从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.
(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.
(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数的图象过点,是中点.
(1)求此二次函数的解析式.
(2)已知,点在抛物线上,点在轴上,当四点构成以为边的平行四边形,求此时点的坐标.
(3)将抛物线在轴下方的部分沿轴向上翻折,得曲线(为关于轴的对称点),在原抛物线轴的上方部分取一点,连接,与翻折后的曲线交于点. 若的面积是面积的3倍,这样的点是否存在?若存在,求出点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,AC是⊙O的切线,BC与⊙O相交于点D,点E在⊙O上,且DE=DA,AE与BC交于点F.
(1)求证:FD=CD;
(2)若AE=8,tan∠E=,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,矩形的顶点,的坐标分别为(2,0),(0,3) ,抛物线:经过,两点.抛物线的顶点为.
(1)求抛物线的表达式和点的坐标;
(2)点是抛物线对称轴上一动点,当为等腰三角形时,求所有符合条件的点的坐标;
(3)如图2,现将抛物线进行平移,保持顶点在直线上,若平移后的抛物线与射线只有一个公共点.设平移后抛物线的顶点横坐标为,求的值或取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB和抛物线的交点是A(0,-3),B(5,9),已知抛物线的顶点D的横坐标是2.
(1)求抛物线的解析式及顶点坐标;
(2)在轴上是否存在一点C,与A,B组成等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;
(3)在直线AB的下方抛物线上找一点P,连接PA,PB使得△PAB的面积最大,并求出这个最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)图象如图,下列结论:①abc>0;②2a+b=0;③a-b+c>0;④当x≠1时,a+b>ax2+bx:⑤4ac<b2.其中正确的有____________(只填序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,-3),点P是直线BC下方抛物线上的一个动点.
(1)求二次函数解析式;
(2)连接PO,PC,并将△POC沿y轴对折,得到四边形.是否存在点P,使四边形为菱形?若存在,求出此时点P的坐标;若不存在,请说明理由;
(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.
(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B= °;
(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.
(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“准互余三角形”,求对角线AC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com