精英家教网 > 初中数学 > 题目详情

【题目】抛物线经过点,且对称轴为直线,其部分图象如图所示. 对于此抛物线有如下四个结论:

;②

③若,则时的函数值小于时的函数值;

④点不在此抛物线上. 其中正确结论的序号是(

A.①②B.②③C.②④D.③④

【答案】B

【解析】

利由抛物线的位置可对①进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(40),代入解析式则可对②进行判断;由抛物线的对称性和二次函数的增减性可对③进行判断;抛物线的对称性得出点(-20)的对称点是(40),由c=-8a 即可得出- =4,则可对④进行判断.

∵抛物线开口向下,
a0
∵抛物线交y轴的正半轴,
c0
ac0

故①错误;
∵抛物线的对称轴为直线x=1
而点(-20)关于直线x=1的对称点的坐标为(40),
16a+4b+c=0

故②正确;
∵抛物线开口向下,对称轴为直线x=1
∴当x1时,yx的增大而减小,
∵若mn0
1+m1+n
x=1+m时的函数值小于x=1+n时的函数值,
∵横坐标是1-n的点的对称点的横坐标为1+n

x=1+n时的函数值等于x=1-n时的函数值,

x=1+m时的函数值小于x=1-n时的函数值,

故③正确;

∵抛物线的对称轴为- =1
b=-2a
∴抛物线为y=ax2-2ax+c
∵抛物线y=ax2+bx+c经过点(-20),
4a+4a+c=0,即8a+c=0
c=-8a
- =4
∵点(-20)的对称点是(40),
∴点(- 0)一定在此抛物线上,

故④错误.
故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.

1)如图1,在ABC中,CD为角平分线,∠A=40°B=60°,求证:CDABC的完美分割线.

2)在ABC中,∠A=48°CDABC的完美分割线,且ACD为等腰三角形,求∠ACB的度数.

3)如图2ABC中,AC=2BC=CDABC的完美分割线,且ACD是以CD为底边的等腰三角形,求完美分割线CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数的图象过点中点.

1)求此二次函数的解析式.

2)已知,点在抛物线上,点轴上,当四点构成以为边的平行四边形,求此时点的坐标.

3)将抛物线在轴下方的部分沿轴向上翻折,得曲线关于轴的对称点),在原抛物线轴的上方部分取一点,连接与翻折后的曲线交于点. 的面积是面积的3倍,这样的点是否存在?若存在,求出点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,AC是⊙O的切线,BC与⊙O相交于点D,点E在⊙O上,且DE=DA,AEBC交于点F.

(1)求证:FD=CD;

(2)若AE=8,tanE=,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,矩形的顶点的坐标分别为(20),(03 ,抛物线经过两点.抛物线的顶点为.

1)求抛物线的表达式和点的坐标;

2)点是抛物线对称轴上一动点,当为等腰三角形时,求所有符合条件的点的坐标;

3)如图2,现将抛物线进行平移,保持顶点在直线上,若平移后的抛物线与射线只有一个公共点.设平移后抛物线的顶点横坐标为,求的值或取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB和抛物线的交点是A(0,-3)B(59),已知抛物线的顶点D的横坐标是2.

(1)求抛物线的解析式及顶点坐标;

(2)轴上是否存在一点C,与AB组成等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;

(3)在直线AB的下方抛物线上找一点P,连接PAPB使得△PAB的面积最大,并求出这个最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数yax2+bx+ca≠0)图象如图,下列结论:①abc0;②2a+b0;③a-b+c0;④当x≠1时,a+bax2+bx:⑤4acb2.其中正确的有____________(只填序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,-3),点P是直线BC下方抛物线上的一个动点.

(1)求二次函数解析式;

(2)连接PO,PC,并将POC沿y轴对折,得到四边形.是否存在点P,使四边形为菱形?若存在,求出此时点P的坐标;若不存在,请说明理由;

(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果三角形的两个内角αβ满足2α+β=90°,那么我们称这样的三角形为准互余三角形”.

(1)若ABC准互余三角形”,C>90°,A=60°,则∠B=   °;

(2)如图①,在RtABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明ABD准互余三角形.试问在边BC上是否存在点E(异于点D),使得ABE也是准互余三角形?若存在,请求出BE的长;若不存在,请说明理由.

(3)如图②,在四边形ABCD中,AB=7,CD=12,BDCD,ABD=2BCD,且ABC准互余三角形,求对角线AC的长.

查看答案和解析>>

同步练习册答案