精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数的图象的顶点在原点O,且经过点A(1,).

(1)求此函数的解析式;

(2)将该抛物线沿着y轴向上平移后顶点落在点P处,直线x=2分别交原抛物和新抛物线于点MN,且SPMN=求:MN的长以及平移后抛物线的解析式.

【答案】(1)y=x2;(2)3y=x2+3

【解析】

(1)根据题意可直接设yax2把点(1,﹣3)代入得a=﹣3,所以y=﹣3x2

(2)设平移后yx2+dd>0),MNd根据题意得出Sd=3即可求得d的值从而求得平移后的解析式

1)∵抛物线顶点是原点可设yax2把点A(1,)代入a所以这个二次函数的关系式为yx2

(2)设平移后yx2+dd>0),∴MNdSd=3,∴d=3,∴yx2+3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】AOB中,C,D分别是OA、OB边上的点,将OCD绕点O顺时针旋转到OC′D′.如图,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点.求证:

(1)AC′=BD′;

(2)AC′BD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连结EF、EO,若DE=DPA=45°.

(1)求⊙O的半径;

(2)求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的图象经过A(0,4),B(2,0),C(-2,0)三点.

(1)求二次函数的表达式;

(2)x轴上有一点D(-4,0),将二次函数的图象沿射线DA方向平移,使图象再次经过点B.

①求平移后图象顶点E的坐标;

②直接写出此二次函数的图象在A,B两点之间(含A,B两点)的曲线部分在平移过程中所扫过的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10,出厂价为每件12,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=-10x+500

1)李明在开始创业的第一个月将销售单价定为20,那么政府这个月为他承担的总差价为多少元?

2设李明获得的利润为W(元),当销售单价定为多少元时,每月可获得最大利润?

3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000,那么政府为他承担的总差价最少为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是由些棱长的正方体小木块搭建成的几何体的主视图、俯视图和左视图,请你观察它是由多少块小木块组成的;在俯视图中标出相应位置立方体的个数;求出该几何体的表面积(包含底面).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】佳佳向探究一元三次方程x3+2x2﹣x﹣2=0的解的情况,根据以往的学习经验,他想到了方程与函数的关系,一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b(k≠0)的解,二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标即为一元二次方程ax2+bx+c=0(a≠0)的解,如:二次函数y=x2﹣2x﹣3的图象与x轴的交点为(﹣1,0)和(3,0),交点的横坐标﹣1和3即为x2﹣2x﹣3=0的解.

根据以上方程与函数的关系,如果我们直到函数y=x3+2x2﹣x﹣2的图象与x轴交点的横坐标,即可知方程x3+2x2﹣x﹣2=0的解.

佳佳为了解函数y=x3+2x2﹣x﹣2的图象,通过描点法画出函数的图象.

x

﹣3

﹣2

﹣1

0

1

2

y

﹣8

0

m

﹣2

0

12

(1)直接写出m的值,并画出函数图象;

(2)根据表格和图象可知,方程的解有   个,分别为   

(3)借助函数的图象,直接写出不等式x3+2x2>x+2的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个200人到300人之间的旅行团队准备外出旅游,旅行团队向某汽车运输公司租用可以乘坐30人、乘坐45人的两种客车若干辆,其中大型客车辆数要多于中型客车辆数.按照预定的租车方案,如果大型客车都坐满,中型客车有一辆就会空出少于一半的座位.但是汽车运输公司发过来的车辆,车型与对应的辆数刚好搞反了,这样就有5个人没有座位可坐.这个旅游团一共有______个人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是抛物线y=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),有下列结论:①2a+b=0,②abc>0;③方程ax2+bx+c=3有两个相等的实数根,④当y<0时,﹣2<x<4,其中正确的是(  )

A. ②③ B. ①③ C. ①③④ D. ①②③④

查看答案和解析>>

同步练习册答案