【题目】已知:如图,△ABC中,P、Q两点分别是边AB和AC的垂直平分线与BC的交点,连结AP和AQ,且BP=PQ=QC.求∠C的度数.
证明:∵P、Q两点分别是边AB和AC的垂直平分线与BC的交点,
∴PA= ,QC=QA.
∵BP=PQ=QC,
∴在△APQ中,PQ= (等量代换)
∴△APQ是 三角形.
∴∠AQP=60°,
∵在△AQC中,QC=QA,
∴∠C=∠ .
又∵∠AQP是△AQC的外角,
∴∠AQP=∠ +∠ =60°.(三角形的一个外角等于与它不相邻的两个内角的和)
∴∠C= .
【答案】BP,垂直平分线上任意一点,到线段两端点的距离相等,PA=QA,等边,QAC,C,QAC,30°.
【解析】
根据线段垂直平分线的性质可得PA=BP,QC=QA,再根据等量关系可得PQ=PA=QA,可得△APQ是 等边三角形,根据等边三角形的性质可得∠AQP=60°,再根据三角形三角形外角的性质和等腰的性质可求∠C的度数.
解:证明:∵P、Q两点分别是边AB和AC的垂直平分线与BC的交点,
∴PA=BP,QC=QA.(垂直平分线上任意一点,到线段两端点的距离相等)
∵BP=PQ=QC,
∴在△APQ中,PQ=PA=QA(等量代换)
∴△APQ是等边三角形.
∴∠AQP=60°,
∵在△AQC中,QC=QA,
∴∠C=∠QAC.
又∵∠AQP是△AQC的外角,
∴∠AQP=∠C+∠QAC=60°.
(三角形的一个外角等于与它不相邻的两个内角的和)
∴∠C=30°.
故答案为:BP,(垂直平分线上任意一点,到线段两端点的距离相等),PA=QA,等边,QAC,C,QAC,30°.
科目:初中数学 来源: 题型:
【题目】一般地,我们把半径为1的圆叫做单位圆,在平面直角坐标系xOy中,设单位圆的圆心与坐标原点O重合,则单位圆与x轴的交点分别为(1,0),(﹣1,0),与y轴的交点分别为(0,1),(0,﹣1).在平面直角坐标系xOy中,设锐角α的顶点与坐标原点O重合,α的一边与x轴的正半轴重合,另一边与单位圆交于点P(x1,y1),且点P在第一象限.
(1)求x1(用含α的式子表示);y1(用含α的式子表示);
(2)将射线OP绕坐标原点O按逆时针方向旋转90°后与单位圆交于点Q(x2,y2).
①判断y1与x2的数量关系,并证明;
②写出y1+y2的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,点D在边AC上,将△ABD沿BD(对称轴)翻折,点A落在点E处,连接AE,CE.
(1)如图1,当∠AEC=90°时,求证:CD=AD;
(2)当点E落在BC边所在直线上,且∠AEC=60°时.
①猜想△BAE是什么三角形并证明;
②试求线段CD、AD之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若,则△A6B6A7的边长为( )
A.6B.12C.16D.32
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等腰三角形ABC中,∠ABC=90度,D是AC边上的动点,连结BD,E、F分别是AB、BC上的点,且DE⊥DF.、(1)如图1,若D为AC边上的中点.
(1)填空:∠C= ,∠DBC= ;
(2)求证:△BDE≌△CDF.
(3)如图2,D从点C出发,点E在PD上,以每秒1个单位的速度向终点A运动,过点B作BP∥AC,且PB=AC=4,点E在PD上,设点D运动的时间为t秒(0≤1≤4)在点D运动的过程中,图中能否出现全等三角形?若能,请直接写出t的值以及所对应的全等三角形的对数,若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n次碰到矩形的边时的点为Pn,点P2019的坐标是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有2部不同的电影A、B,甲、乙、丙3人分别从中任意选择1部观看.
(1)求甲选择A部电影的概率;
(2)求甲、乙、丙3人选择同一部电影的概率(请用画树状图的方法给出分析过程,并求出结果)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com