精英家教网 > 初中数学 > 题目详情

【题目】(1)将一副三角板按图甲的位置放置,那么∠AOD和∠BOC相等吗?∠AOC和∠BOD在数量上有何关系?说明理由.

(2)若将这副三角板按图乙所示摆放,三角板的直角顶点重合在点O处.上述关系还成立吗?

【答案】(1)∠AOD和∠BOC相等,∠AOC和∠BOD互补.理由见解析;(2)成立.理由见解析.

【解析】

(1)根据直角三角板可得:∠AOB=COD=90°,再根据等式的性质两边同时加上∠BOD可得∠AOD=COB;根据周角为360°且∠AOB=COD=90°,则∠AOC+BOD=360°90°90°=180°可得∠AOC和∠BOD互补;

(2)根据直角三角板可得:∠AOB=COD=90°,再根据等式的性质两边同时减去∠BOD可得∠AOD=COB;根据角的和差关系可得∠BOD+AOC=BOD+AOB+COB=90°+90°=180°,进而可得∠BOD+AOC=180°

(1)AOD和∠BOC相等,AOC和∠BOD互补.

理由:

AOB=COD=90°,

AOB+BOD=COD+BOD,

AOD=COB;

AOB=COD=90°,

BOD+AOC=360°-90°-90°=180°,

AOC和∠BOD互补.

(2)成立.

理由:

AOB=COD=90°,

AOB-BOD=COD-BOD,

AOD=COB;

AOB=COD=90°,

BOD+AOC=BOD+AOB+COB=90°+BOD+COB=90°+DOC=90°+90°=180°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】己知:如图1,⊙O的半径为2 BC是⊙O的弦,点A是⊙O上的一动点。

图1 图2

1)当△ABC的面积最大时,请用尺规作图确定点A位置(尺规作图只保留作图痕迹, 不需要写作法);

2)如图2,在满足(1)条件下,连接AO并延长交⊙O于点D,连接BD并延长交AC 的延长线于点E,若∠BAC=45° ,AC2+CE2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】蒙蒙和贝贝都住在M小区,在同一所学校读书.某天早上,蒙蒙730M小区站乘坐校车去学校,途中停靠了两个站点才到达学校站点,且每个站点停留2分钟,校车在每个站点之间行驶速度相同;当天早上,贝贝738M小区站乘坐出租车沿相同路线出发,出租车匀速行驶,结果比蒙蒙乘坐的校车早2分钟到学校站点.他们乘坐的车辆从M小区站出发所行驶路程y(千米)与校车离开M小区站的时间x(分)之间的函数图象如图所示.

1)求图中校车从第二个站点出发时点B的坐标;

2)求蒙蒙到达学校站点时的时间;

3)求贝贝乘坐出租车出发后经过多少分钟追上蒙蒙乘坐的校车,并求此时他们距学校站点的路程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知在△ABC中,AB=AC,BD和CE分别是∠ABC和∠ACB的角平分线,且BD和CE相交于O点.

(1)试说明△OBC是等腰三角形;

(2)连接OA,试判断直线OA与线段BC的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一只小虫从点A出发向北偏西30°方向,爬行了3cm到点B,再从点B出发向北偏东60°爬了3cm到点C

1)试画图确定ABC的位置;

2)从图上量出点C到点A的距离(精确到01cm);

3)指出点C在点A的什么方位?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)又一个六一国际儿童节即将到来,学校打算给初一的学生赠送精美文具包,文具店规定一次购买400个以上,可享受8折优惠.若给初一学生每人购买一个,则不能享受优惠,需付款1936元;若多买88个,则可享受优惠,同样只需付款1936元,该校初一年级学生共有多少人?

(2)初一(1)班为准备六一联欢会,欲购买价格分别为4元、8元和20元的三种奖品,每种奖品至少购买一件,共买16件,恰好用100元.若4元的奖品购买a件,先用含a的代数式表示另外两种奖品的件数,然后设计可行的购买方案.

作为初二的大哥哥、大姐姐,你会解决这两个问题吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,以A为圆心,AB为半径的圆交ADF,交BCG,延长BA交圆于E.

(1)若ED与⊙A相切,试判断GD与⊙A的位置关系,并证明你的结论;

(2)在(1)的条件不变的情况下,若GC=CD,求∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某电信检修小组从A地出发,在东西向的公路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下.(单位:km

1)求收工时距A地多远?

2)在第几次纪录时距A地最远?

3)若每km耗油0.2升,问共耗油多少升?

查看答案和解析>>

同步练习册答案