精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,点O在边AC上,⊙O与△ABC的边BC,AB分别相切于C,D两点,与边AC交于E点,弦CF与AB平行,与DO的延长线交于M点.
(1)求证:点M是CF的中点;
(2)若E是 的中点,BC=a,写出求AE长的思路.

【答案】
(1)解:证明:∵AB与⊙O相切于点D,

∴OD⊥AB于D.

∴∠ODB=90°.

∵CF∥AB,

∴∠OMF=∠ODB=90°.

∴OM⊥CF.

∴点M是CF的中点


(2)解:思路:

连接DC,DF.

①由M为CF的中点,E为 的中点,

可以证明△DCF是等边三角形,且∠1=30°;

②由BA,BC是⊙O的切线,可证BC=BD=a.

由∠2=60°,从而△BCD为等边三角形;

③在Rt△ABC中,∠B=60°,BC=BD=a,可以求得AD=a,CO= ,OA=

④AE=AO﹣OE= =

解:连接DC,DF,

由(1)证得M为CF的中点,DM⊥CF,

∴DC=DF,

∵E是 的中点,

∴CE垂直平分DF,

∴CD=CF,

∴△DCF是等边三角形,

∴∠1=30°,

∵BC,AB分别是⊙O的切线,

∴BC=BD=a,∠ACB=90°,

∴∠2=60°,

∴△BCD是等边三角形,

∴∠B=60°,

∴∠A=30°,

∴OD= a,AO= a,

∴AE=AO﹣OE= a.


【解析】(1)根据切线的性质得到OD⊥AB于D.根据平行线的性质得到∠OMF=∠ODB=90°.由垂径定理即可得到结论;(2)连接DC,DF.由M为CF的中点,E为 的中点,可以证明△DCF是等边三角形,根据等边三角形的性质得到∠1=30°;根据切线的性质得到BC=BD=a.推出△BCD为等边三角形;解直角三角形即可得到结论.
【考点精析】本题主要考查了切线的性质定理的相关知识点,需要掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正比例函数y=kx经过点A(2,4),AB⊥x轴于点B.
(1)求该正比例函数的解析式;
(2)将△ABO绕点A逆时针旋转90°得到△ADC,求点C的坐标;
(3)试判断点C是否在直线y= x+1的图象上,说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,二次函数y= x2+bx+c与一次函数y= x﹣3的图象都经过x轴上点A(4,0)和y轴上点B(0,﹣3),过动点M(m,0)(0<m<4)作x轴的垂线交直线AB于点C,交抛物线于点P.

(1)求b,c的值;
(2)点M在运动的过程中,能否使△PBC为直角三角形?如果能,求出点P的坐标;如果不能,请说明理由;
(3)如图2,过点P作PD⊥AB于点,设△PCD的面积为S1 , △ACM的面积为2 , 若 =
①求m的值;
②如图3,将线段OM绕点O顺时针旋转得到OM′,旋转角为α(0°<α<90°),连接M'A、M'B,求M'A+ M'B的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,若∠A=15°,AB=BC=CD=DE=EF,则∠DEF等于__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人参加某体育项目训练,为了便于研究,把最后5次的训练成绩分别用实线和虚线连接起来,如图,下面的结论错误的是(  )

A. 乙的第2次成绩与第5次成绩相同

B. 3次测试,甲的成绩与乙的成绩相同

C. 4次测试,甲的成绩比乙的成绩多2

D. 5次测试中,甲的成绩都比乙的成绩高

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:若线段上的一个点把这条线段分成12的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且ACCB12,则点C是线段AB的一个三等分点,显然,一条线段的三等分点有两个.

1)已知:如图2DE15cm,点PDE的三等分点,求DP的长.

2)已知,线段AB15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2cm,设运动时间为t秒.

若点PQ同时出发,且当点P与点Q重合时,求t的值.

若点PQ同时出发,且当点P是线段AQ的三等分点时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数学课上,老师提出如下问题:已知:线段a,b(如图1).

求作:等腰△ABC,使AB=AC,BC=a,BC边上的高为b.
小姗的作法如下:如图2,

(i)作线段BC=a;
(ii)作线段BC的垂直平分线MN交线段BC于点D;
(iii)在MN上截取线段DA=b,连接AB,AC.所以,△ABC就是所求作的等腰三角形.
老师说:“小姗的作法正确”.
请回答:得到△ABC是等腰三角形的依据是:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠ABC=90°,DE⊥AC于点E,且AE=CE,DE=5,EB=12.
(1)求AD的长;
(2)若∠CAB=30°,求四边形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程或方程组解应用题: 在某场CBA比赛中,某位运动员的技术统计如表所示:

技术

上场时间(分钟)

出手投篮(次)

投中
(次)

罚球得分(分)

篮板
(个)

助攻(次)

个人总得分(分)

数据

38

27

11

6

3

4

33

注:(i)表中出手投篮次数和投中次数均不包括罚球;
(ii)总得分=两分球得分+三分球得分+罚球得分.
根据以上信息,求本场比赛中该运动员投中两分球和三分球各几个.

查看答案和解析>>

同步练习册答案