【题目】已知:抛物线y=﹣mx2+(2m﹣1)x+m2﹣1经过坐标原点,且开口向上
(1)求抛物线的解析式;
(2)结合图象写出,0<x<4时,直接写出y的取值范围 ;
(3)点A是该抛物线上位于x轴下方的一个动点,过A作x轴的平行线交抛物线于另一点D,作AB⊥x轴于点B,DC⊥x轴于点C.当BC=1时,求出矩形ABCD的周长.
【答案】(1)y=x2﹣3x;(2)﹣≤y<4;(3)6.
【解析】
(1)把(0,0)代入抛物线解析式求出m的值,再根据开口方向确定m的值即可.
(2)求出函数最小值以及x=0或4是的y的值,由此即可判断.
(3)由BC=1,B、C关于对称轴对称,推出B(,1,0),C(2,0),由AB⊥x轴,DC⊥x轴,推出A(1,﹣2),D(2,﹣2),求出AB,即可解决问题.
解:(1)∵y=x2+(2m﹣1)x+m2﹣1经过坐标原点,
∴0=0+0+m2﹣1,即m2﹣1=0
解得m=±1.
又∵开口向上,
∴﹣m>0,
∴m<0,
∴m=﹣1,
∴二次函数解析式为y=x2﹣3x.
(2)∵y=x2﹣3x═(x﹣)2﹣,
∴x=时,y最小值为﹣,
x=0时,y=0,
x=4时,y=4,
∴0<x<4时,﹣≤y<4.
故答案为﹣≤y<4.
(3)如图,
∵BC=1,B、C关于对称轴对称,
∴B(1,0),C(2,0),
∵AB⊥x轴,DC⊥x轴,
∴A(1,﹣2),D(2,﹣2),
∴AB=DC=2,BC=AD=1,
∴四边形ABCD的周长为6,
当BC=1时,矩形的周长为6.
科目:初中数学 来源: 题型:
【题目】(操作发现)如图(1),在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=45°,连接AC,BD交于点M.
①AC与BD之间的数量关系为 ;
②∠AMB的度数为 ;
(类比探究)如图(2),在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC,交BD的延长线于点M.请计算的值及∠AMB的度数;
(实际应用)如图(3),是一个由两个都含有30°角的大小不同的直角三角板ABC、DCE组成的图形,其中∠ACB=∠DCE=90°,∠A=∠D=30°且D、E、B在同一直线上,CE=1,BC= ,求点A、D之间的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,P 为△ABC 内一点,连接 PA、PB、PC,在△PAB、△PBC 和△PAC 中,如果存在一个三角形与△ABC 相似,那么就称 P 为△ABC 的自相似点.
(1)如图 2,已知 Rt△ABC 中,∠ACB=90°,CD 是 AB 上的中线,过点 B 作 BE⊥CD,垂足为 E,试说明 E 是△ABC 的自相似点.
(2)如图 3,在△ABC 中,∠A<∠B<∠C.若△ABC 的三个内角平分线的交 点 P 是该 三角形的自相似点,求该三角形三个内角的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】赣州蓉江新区某汽车销售公司去年12月份销售新上市一种新型低能耗汽车200辆,由于该型汽车的优越的经济适用性,销量快速上升,今年2月月份该公司销售该型汽车达到450辆,并且去年12月到今年1月和今年1月到2月两次的增长率相同.
(1)求该公司销售该型汽车每次的增长率;
(2)若该型汽车每辆的盈利为5万元,则平均每天可售8辆,为了尽量减少库存,汽车销售公司决定采取适当的降价措施,经调查发现,每辆汽车每降5000元,公司平均每天可多售出2辆,若汽车销售公司每天要获利48万元,每辆车需降价多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=x2﹣2x﹣8.
(1)用配方法把y=x2﹣2x﹣8化为y=(x﹣h)2+k形式;
(2)并指出:抛物线的顶点坐标是 ,抛物线的对称轴方程是 ,抛物线与x轴交点坐标是 ,当x 时,y随x的增大而增大.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在二次函数y=-x2+bx+c中,函数y与自变量x的部分对应值如下表:
x | …… | -2 | 0 | 3 | 4 | …… |
y | …… | -7 | m | n | -7 | …… |
则m、n的大小关系为( )
A. m>n B. m<n C. m=n D. 无法确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2017黑龙江省龙东地区)已知:△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°.连接AD,BC,点H为BC中点,连接OH.
(1)如图1所示,易证:OH=AD且OH⊥AD(不需证明)
(2)将△COD绕点O旋转到图2,图3所示位置时,线段OH与AD又有怎样的关系,并选择一个图形证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,函数y=2x+10的图像与函数y=(x<0)的图像相交于点A,并与x轴交于点C.点D是线段上一点,△ODC与△OAC的面积比为1:3.若将△ODC绕点O逆时针旋转得到△OD′C′,当点D′第一次落在函数y=(x<0)的图像上时,C′的横坐标为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于两点,与轴交于点,且.
(1)求抛物线的解析式.
(2)若点是抛物线上一点,那么在抛物线的对称轴上,是否存在一点,使得的周长最小?若存在,请求出点的坐标:若不存在,请说明理由.注:二次函数的对称轴是直线.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com