精英家教网 > 初中数学 > 题目详情
7.因式分解:
(1)-3x3+12x2-12x;             
(2)9(x+y+z)2-(x-y-z)2

分析 (1)原式提取公因式,再利用完全平方公式分解即可;
(2)原式利用平方差公式分解即可.

解答 解:(1)原式=-3x(x2-4x+4)=-3x(x-2)2
(2)原式=[3(x+y+z)+(x-y-z)][3(x+y+z)-(x-y-z)]=4(2x+y+z)(x+2y+z).

点评 此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

17.一个运动员打尔夫球,若球的飞行高度y(m)与水平距离x(m)之间的函数表达式为y=-$\frac{1}{90}{({x-30})^2}$+10,则高尔夫球第一次落地时距离运动员(  )
A.10mB.20mC.30mD.60m

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.若用40m的篱笆围成一个一边靠墙的矩形场地,墙长a m,垂直于墙的边长为x m,围成的矩形场地的面积为y m2
(1)求y与x的函数关系式.
(2)矩形场地的面积能否达到210m2?请说明理由.
(3)当a=15m或30m时,请分别求出这个矩形场地面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知:4是2n+2的平方根,3m+n+1的立方根是-3,求-3m-n的平方根.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.已知|x+2|+$\sqrt{y-10}=0$,则$\root{3}{x+y}$=2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算
(1)(x2y-$\frac{1}{2}$xy2-2xy)÷$\frac{1}{2}$xy;
(2)先化简,再求值:(a+2b)(2a-b)-(a+2b)2-(a-2b)2,其中a=-$\frac{1}{3}$,b=-3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.边长为13的菱形,一条对角线长为10,则菱形的面积为120.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.已知:(x+$\frac{1}{x}$)=1,则代数式(x+$\frac{1}{x}$)2016+(x+$\frac{1}{x}$)-5的值是-3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.-42+3×(-2)2-(-$\frac{1}{9}$)÷(-$\frac{1}{3}$)3

查看答案和解析>>

同步练习册答案