精英家教网 > 初中数学 > 题目详情

【题目】下列说法中正确的是(

A. |a|=﹣a,则 a 定是负数

B. 单项式 x3y2z 的系数为 1,次数是 6

C. AP=BP,则点 P 是线段 AB 的中点

D. 若∠AOC=AOB,则射线 OC 是∠AOB 的平分线

【答案】B

【解析】

A、根据绝对值的定义,绝对值等于它的相反数的数是负数或零.

B、根据单项式系数的定义来选择,单项式中数字因数叫做单项式的系数,单项式中所有字母的指数和叫做这个单项式的次数.

C、根据两点间的距离的概念进行判断.

D、根据角平分线的定义进行解答.

解:A、若|a|=-a,则a一定是负数或零,故本选项错误;

B、单项式x3y2z的系数为1,次数是:3+2+1=6,故本选项正确;

C、若AP=BP,则点P是线段AB的中点或垂直平分线上的点,故本选项错误;

D、如图所示,

OC不是∠AOB的平分线,但是也符合∠AOC+∠BOC=∠AOB,故本选项错误;

故选:B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线与x轴交于A(﹣1,0)、B(5,0)两点,与y轴交于点C(0,5).

(1)求该抛物线所对应的函数关系式;
(2)D是笫一象限内抛物线上的一个动点(与点C、B不重合),过点D作DF⊥x轴于点F,交直线BC于点E,连结BD、CD.设点D的横坐标为m,△BCD的面积为S.
①求S关于m的函数关系式及自变量m的取值范围;
②当m为何值时,S有最大值,并求这个最大值;
③直线BC能否把△BDF分成面积之比为2:3的两部分?若能,请求出点D的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数轴上有A、B、C三个点,它们表示的数分别是

(1)填空:AB= ,BC=

(2)现有动点M、N都从A点出发,点M以每秒2个单位长度的速度向右移动,当点M移动到B点时,点N才从A点出发,并以每秒3个单位长度的速度向右移动,求点N移动多少时间,点N追上点M?

(3)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和7个单位长度的速度向右运动。试探索:BC-AB的值是否随着时间的变化而改变?请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足下列关系式: y=
(1)李明第几天生产的粽子数量为420只?
(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价﹣成本)
(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△P1OA1 , △P2A1A2都是等腰直角三角形,点P1 , P2都在函数y= (x>0)的图象上,斜边OA1、A1A2都在x轴上,则点P2的坐标是(
A.(4
B.(4+2 ,4﹣2 )??
C.(2+2 ,2 ﹣2)
D.(4+2 ,2+2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,C、D是线段AB上两点,已知AC:CD:DB=1:2:3,M、N分别为AC、DB的中点,且AB=12cm,

(1)求线段CD的长;

(2)求线段MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O是△ABC的外接圆,AB是直径,作OD∥BC与过点A的切线交于点D,连接DC并延长交AB的延长线于点E.
(1)判断DE与⊙O的位置关系,并证明你的结论;
(2)若AE=6,CE=2 . ①求⊙O的半径
②求线段CE,BE与劣弧 所围成的图形的面积(结果保留根号和π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+3交y轴于点A,交x轴正半轴于点C(3,0),交x轴负半轴于点B(﹣1,0),∠ACB=45°.

(1)求此抛物线的解析式;
(2)点D为线段AC上一点,且AD=2CD,过点D作DE∥y轴,交抛物线一点E,点P为x轴上方抛物线的一点,设点P的横坐标为t,△PDE的面积为s,求s与t之间的函数关系式,并直接写出t的范围;
(3)在(2)的条件下,过点P作PF∥DE交直线AC于点F,是否存在点P,使以点P、F、E、D为顶点的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系xOy中,已知点A(a,0)(a>0),B(2,3),C(0,3).过原点O作直线l,使它经过第一、三象限,直线l与y轴的正半轴所成角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ[θ,a].

(1)若点D与点A重合,则这个操作过程为FZ[];
(2)若点D恰为AB的中点(如图2),求θ;

(3)经过FZ[45°,a]操作,点B落在点E处,若点E在四边形0ABC的边AB上,求出a的值;若点E落在四边形0ABC的外部,直接写出a的取值范围;
(4)经过FZ[θ,a]操作后,作直线CD交x轴于点G,交直线AB于点H,使得△ODG与△GAH是一对相似的等腰三角形,直接写出FZ[θ,a].

查看答案和解析>>

同步练习册答案