【题目】如图,在平面直角坐标系中,点A是抛物线与x轴正半轴的交点,点B在抛物线上,其横坐标为2,直线AB与y轴交于点点M、P在线段AC上不含端点,点Q在抛物线上,且MQ平行于x轴,PQ平行于y轴设点P横坐标为m.
(1)求直线AB所对应的函数表达式.
(2)用含m的代数式表示线段PQ的长.
(3)以PQ、QM为邻边作矩形PQMN,求矩形PQMN的周长为9时m的值.
【答案】(1)直线AB的解析式为;(2)见解析;(3)m的值为或.
【解析】试题分析:(1)先利用二次函数解析式求出A点和B点坐标,然后利用待定系数法求直线AB的解析式;
(2)设P(m,-m+8),则Q(m,-m2+4m),讨论:当0<m≤2时,PQ=m2-5m+8;当2<m<8时,PQ=-m2+5m-8;
(3)先表示出M(m2-4m+8,-m2+4m),讨论:当0<m≤2,QM=m2-5m+8,利用矩形周长列方程得到2(m2-5m+8+m2-5m+8)=9,然后解方程求出满足条件m的值;当2<m<8,QM=-m2+5m-8,利用矩形周长列方程得到2(-m2+5m-8-m2+5m-8)=9,然后解方程求出满足条件m的值.
试题解析:(1)当y=0时,-x2+4x=0,解得x1=0,x2=8,则A(8,0);
当x=2时,y=-x2+4x=6,则B(2,6),
设直线AB所对应的函数表达式为y=kx+b,
将A(8,0),B(2,6)代入可得,
解得,
所以直线AB的解析式为y=-x+8;
(2)设P(m,-m+8),则Q(m,-m2+4m),
当0<m≤2时,PQ=-m+8-(-m2+4m)=m2-5m+8;
当2<m<8时,PQ=-m2+4m-(-m+8)=-m2+5m-8;
(3)∵MQ∥x轴,
∴M点的纵坐标为-m2+4m,
∴M点的横坐标为m2-4m+8,即M(m2-4m+8,-m2+4m),
当0<m≤2,QM=m2-4m+8-m=m2-5m+8,
∵2(PQ+QM)=9,
∴2(m2-5m+8+m2-5m+8)=9,
整理得2m2-20m+23=0,解得m1=,m2=(舍去);
当2<m<8,QM=m-(m2-4m+8)=-m2+5m-8,
∵2(PQ+QM)=9,
∴2(-m2+5m-8-m2+5m-8)=9,
整理得2m2-20m+41=0,解得m1=,m2=(舍去);
综上所述,m的值为或.
科目:初中数学 来源: 题型:
【题目】阅读下列材料:
解方程:x4﹣6x2+5=0.这是一个一元四次方程,根据该方程的特点,它的解法通常是:
设x2=y,那么x4=y2,于是原方程可变为y2﹣6y+5=0…①,
解这个方程得:y1=1,y2=5.
当y=1时,x2=1,∴x=±1;
当y=5时,x2=5,∴x=±
所以原方程有四个根:x1=1,x2=﹣1,x3=,x4=﹣.
在这个过程中,我们利用换元法达到降次的目的,体现了转化的数学思想.
(1)解方程(x2﹣x)2﹣4(x2﹣x)﹣12=0时,若设y=x2﹣x,则原方程可转化为 ;求出x
(2)利用换元法解方程:=2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.假设商场降价元,
(1)降价元后,每一件童装的利润为___________(元),每天可以卖出去的童装件数为____________(件)(用含的代数式表示);
(2)若销售该童装每天盈利要达到1200元,则每件童装应该降价多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图一次函数y1=-x-2与y2=x-4的图象相交于点A.
(1)求点A的坐标;
(2)若一次函数y1=-x-2与y2=x-4的图象与x轴分别相交于点B、C,求△ABC的面积.
(3)结合图象,直接写出y1>y2时x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,已知∠C=90°,∠A=60°,AC=3cm,以斜边AB的中点P为旋转中心,把这个三角形按逆时针方向旋转90°得到Rt△A′B′C′,则旋转前后两个直角三角形重叠部分的面积为______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.
(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;
(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一儿童服装商店在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六·一”儿童节,商店决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装上盈利1200元,那么每件童装应降价多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图的图例①是一个方阵图,每行的3个数、每列的3个数、斜对角的3个数相加的和均相等.如果将方阵图的每个数都加上同一个数,那么方阵中每行的3个数、每列的3个数、斜对角的3个数相加的和仍然相等,这样就形成新的方阵图.
根据图①②③中给出的数,对照原来的方阵图,请你完成图②③的方阵图?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com