【题目】已知:如图,AD⊥BC,垂足为D,AD=BD,点E在AD上,∠CED=45°,
(1)请写出图中相等的线段: .(不包括已知条件中的相等线段)
(2)猜想BE与AC的位置关系,并说明理由.
【答案】(1)DE=DC,BE=AC;(2)互相垂直,理由见解析
【解析】
(1)根据题目中的条件和图形,可以证明△BDE≌△ADC,从而可以得到对应边相等,本题得以解决;
(2)根据△BDE≌△ADC和直角三角形的性质,可以得到BE与AC的位置关系.
(1)∵AD⊥BC,
∴∠ADB=∠ADC=90°,
∵∠CED=45°,
∴∠ECD=45°,
∴∠ECD=∠CED,
∴DE=DC,
在△BDE和△ADC中
∴△BDE≌△ADC(SAS)
∴BE=AC,
由上可得,图中相等的线段:DE=DC,BE=AC,
故答案为:DE=DC,BE=AC;
(2)BE与AC的位置关系是互相垂直,
理由:由(1)知,△BDE≌△ADC,
则∠DBE=∠DAC,
∵∠EDB=90°,
∴∠DBE+∠DEB=90°,
∵∠DEB=∠AEF,
∴∠DBE+∠AEF=90°,
∴∠DAC+∠AEF=90°,
∴∠AFE=90°,
∴BF⊥AC,
即BE与AC的位置关系是互相垂直.
科目:初中数学 来源: 题型:
【题目】已知点在抛物线:(,均为常数且)上,交轴于点,连接.
(1)用表示,并求的对称轴;
(2)当经过点(4,-7)时,求此时的表达式及其顶点坐标;
(3)横,纵坐标都是整数的点叫做整点如图,当时,若在点,之间的部分与线段所围成的区域内(不含边界)恰有5个整点,求的取值范围:
(4)点,是上的两点,若,当时,均有,直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣(其中m>0)与x轴分别交于A,B两点(A在B的右侧),与y轴交于点c.
(1)求△AOC的周长,(用含m的代数式表示)
(2)若点P为直线AC上的一点,且点P在第二象限,满足OP2=PCPA,求tan∠APO的值及用含m的代数式表示点P的坐标;
(3)在(2)的情况下,线段OP与抛物线相交于点Q,若点Q恰好为OP的中点,此时对于在抛物线上且介于点C与抛物线顶点之间(含点C与顶点)的任意一点M(x0,y0)总能使不等式n≤及不等式2n﹣恒成立,求n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线分别与轴、轴相交于点B、C,经过点B、C的抛物线与轴的另一个交点为A.
(1)求出抛物线表达式,并求出点A坐标;
(2)已知点D在抛物线上,且横坐标为3,求出△BCD的面积;
(3)点P是直线BC上方的抛物线上一动点,过点P作PQ垂直于轴,垂足为Q.是否存在点P,使得以点A、P、Q为顶点的三角形与△BOC相似?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某建筑物上挂着“巴山渝水,魅力重庆”的宣传条幅,王同学利用测倾器在斜坡的底部处测得条幅底部的仰角为60°,沿斜坡AB走到B处测得条幅顶部C的仰角为50°.已知斜坡的坡度米,米(点在同平面内,,测倾器的高度忽略不计),则条幅的长度约为(参考数据:)
A.12.5米B.12.8米C.13.1米D.13.4米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质——应用函数解决问题”的学习过程.在画函数图象时,我们可以通过描点或平移的方法画出一个函数的大致图象,结合上面经历的学习过程,现在来解决下面问题:
在函数中,当时,;当时,.
(1)求这个函数的表达式;
(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象,并写出这个函数的一条性质;
(3)已知函数的图象如图所示,结合你所画的函数图象,直接写出不等式的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,2分别是某款篮球架的实物图与示意图,AB⊥BC于点B,底座BC=1.3米,底座BC与支架AC所成的角∠ACB=60°,点H在支架AF上,篮板底部支架EH∥BC.EF⊥EH于点E,已知AH=米,HF=米,HE=1米.
(1)求篮板底部支架HE与支架AF所成的∠FHE的度数.
(2)求篮板底部点E到地面的距离,(精确到0.01米)(参考数据:≈1.41,≈1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店购进甲乙两种商品,甲的进货单价比乙的进货单价高20元,已知20个甲商品的进货总价与25个乙商品的进货总价相同.
(1)求甲、乙每个商品的进货单价;
(2)若甲、乙两种商品共进货100件,要求两种商品的进货总价不高于9000元,同时甲商品按进价提高10%后的价格销售,乙商品按进价提高25%后的价格销售,两种商品全部售完后的销售总额不低于10480元,问有哪几种进货方案?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com