【题目】如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1,平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;
(2)若将△A1B1C1绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标.
科目:初中数学 来源: 题型:
【题目】阅读材料,回答问题
一艘轮船以20海里/时的速度由西向东航行,途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心20 海里的圆形区域(包括边界)都属台风区,当轮船到A处时,测得台风中心移到位于点A正南方向B处,且AB=100海里.
(1)若这艘轮船自A处按原速度和方向继续航行,在途中会不会遇到台风?若会,试求轮船最初遇到台风的时间;若不会,说明理由;
(2)现轮船自A处立即提高船速,向位于北偏东60°方向,相距60海里的D港驶去,为使台风到来之前,到达D港,问船速至少应提高多少(提高的船速取整数, ≈3.6)?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,EF⊥AB于F,CD⊥AB于D,点在AC边上,且∠1=∠2=.
(1)判断DG与BC的位置关系,并加以证明;
(2)若∠AGD=,试求∠DCG的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(生活常识)
射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等。如图 1,MN 是平面镜,若入射光线 AO 与水平镜面夹角为∠1,反射光线 OB 与水平镜面夹角为∠2,则∠1=∠2 .
(现象解释)
如图 2,有两块平面镜 OM,ON,且 OM⊥ON,入射光线 AB 经过两次反射,得到反射光线 CD.求证 AB∥CD.
(尝试探究)
如图 3,有两块平面镜 OM,ON,且∠MON =55 ,入射光线 AB 经过两次反射,得到反射光线 CD,光线 AB 与 CD 相交于点 E,求∠BEC 的大小.
(深入思考)
如图 4,有两块平面镜 OM,ON,且∠MON α ,入射光线 AB 经过两次反射,得到反射光线 CD,光线 AB 与 CD 所在的直线相交于点 E,∠BED=β , α 与 β 之间满足的等量关系是 .(直接写出结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,将△ABC沿着某一方向平移一定的距离得到△MNL,则下列结论中正确的有( )
①AM∥BN;②AM=BN;③BC=ML;④∠ACB=∠MNL。
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地区为了进一步缓解交通拥堵问题,决定修建一条长为7千米的公路.如果平均每天的修建费y(万元)与修建天数x(天)在30≤x≤12 0之间时具有一次函数的关系,如下表所示.
x | 50 | 60 | 90 | 120 |
y | 40 | 38 | 32 | 26 |
(1)求y关于x的函数关系式;
(2)后来在修建的过程中计划发生改变,政府决定多修3千米,因此在没有增减建设力量的情况下,修完这条路比计划晚了15天,求原计划每天的修建费.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+2的图象与x轴交于点A(﹣1,0)、B(4,0),与y轴交于点C.
(1)a=;b=;
(2)点P为该函数在第一象限内的图象上的一点,过点P作PQ⊥BC于点Q,连接PC.
①求线段PQ的最大值;
②若以P、C、Q为顶点的三角形与△ABC相似,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=9,BC=12,在Rt△DEF中,∠DFE=90°,EF=6,DF=8,E、F两点在BC边上,DE、DF两边分别与AB边交于点G、H.固定△ABC不动,△DEF从点F与点B重合的位置出发,沿BC边以每秒1个单位的速度向点C运动;同时点P从点F出发,在折线FD﹣DE上以每秒2个单位的速度向点E运动.当点E到达点C时,△DEF和点P同时停止运动.设运动时间为t(秒).
(1)当t=2时,PH=cm,DG=cm;
(2)当t为何值时,△PDG为等腰三角形?请说明理由;
(3)当t为何值时,点P与点G重合?写出计算过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图①、图②是8×5的正方形网格,线段AB、BC的端点均在格点上.按要求在图①、图②中以AB、BC为邻边各画一个四边形ABCD,使点D在格点上.要求所画两个四边形不全等,且同时满足四边形ABCD是轴对称图形,点D到∠ABC两边的距离相等.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com