精英家教网 > 初中数学 > 题目详情

【题目】课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为123)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为456789),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为100的微生物会出现在( )

A.3B.4C.5D.6

【答案】C

【解析】

解:由图和题意可知,

第一天产生新的微生物有6个标号,

第二天产生新的微生物有12个标号,

以此类推,第三天、第四天、第五天产生新的微生物分别有24个,48个,96个,

而前四天所有微生物的标号共有3+6+12+24+48=93个,

所以标号为100的微生物会出现在第五天.

故选C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知点A,点C在反比例函数yk0x0)的图象上,ABx轴于点BOCAB于点D,若CDOD,则AODBCD的面积比为__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面的材料:

如果函数 yfx)满足:对于自变量 x 的取值范围内的任意 x1x2

1)若 x1x2,都有 fx1)<fx2),则称 fx)是增函数;

2)若 x1x2,都有 fx1)>fx2),则称 fx)是减函数.

例题:证明函数fx)= x0)是减函数.

证明:设 0x1x2

fx1)﹣fx2)=

0x1x2

x2x10x1x20

0.即 fx1)﹣fx2)>0

fx1)>fx2).

∴函数 fx= x0)是减函数.

根据以上材料,解答下面的问题:

已知函数

f(﹣1)= +(﹣2)=-1f(﹣2)= +(﹣4)=

1)计算:f(﹣3)= f(﹣4)=

2)猜想:函数 函数(填“增”或“减”);

3)请仿照例题证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,点A是劣弧BC的中点,点D是优弧BC上一点,且sinD,求证:四边形ABOC为菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某区九年级学生身体素质情况,该区从全区九年级学生中随机抽取了部分学生进行了一次体育考试科目测试(把测试结果分为四个等级:A级;优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如图两幅不完整的统计图.请根据统计图中的信息解答下列问题:

1)本次抽样测试的学生是__

2)求图1的度数是 ,把图2条形统计图补充完整;

3)该区九年级有学生名,如果全部参加这次体育科目测试,请估计不及格的人数为___

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在每个小正方形的边长为1的网格中,△ABC的顶点ABC均在格点上,点DAC边上的一点.

1)线段AC的长为 

2)在如图所示的网格中,AM是△ABC的角平分线,在AM上求一点P,使CP+DP的值最小,请用无刻度的直尺,画出AM和点P,并简要说明AM和点P的位置.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直径为10的⊙A经过点C(0,5)和点O (0,0)By轴右侧⊙A优弧上一点,则∠OBC 的余弦值为 _________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=﹣x+5x轴交于点B,与y轴交于点C.抛物线yx2+bx+c经过点B和点C,与x轴交于另一点A,连接AC

1)求抛物线的解析式;

2)若点Q在直线BC上方的抛物线上,连接QCQB,当△ABC与△QBC的面积比等于23时,直接写出点Q的坐标:

3)在(2)的条件下,点Hx轴的负半轴,连接AQQH,当∠AQH=∠ACB时,直接写出点H的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抗击疫情,我们每个人都要做到讲卫生,勤洗手,科学消毒,如图(1)是一瓶消毒洗手液. 图(2)是它的示意图,当手按住顶部A下压时,洗手液瞬间从喷口B流出,路线从抛物线经过CE两点.瓶子上部分是由弧和弧组成,其圆心分别为DC.下部分的是矩形CGHD的视图,CG=8 cmGH=10 cm,点E到台面GH的距离为14 cm,点B到台面的距离为20 cm,且BDH三点共线.若手心距DH的水平距离为2 cm时刚好接洗手液,此时手心距水平台面的高度为______cm

查看答案和解析>>

同步练习册答案