精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,在每个小正方形的边长为1的网格中,△ABC的顶点ABC均在格点上,点DAC边上的一点.

1)线段AC的长为 

2)在如图所示的网格中,AM是△ABC的角平分线,在AM上求一点P,使CP+DP的值最小,请用无刻度的直尺,画出AM和点P,并简要说明AM和点P的位置.

【答案】15;(2)见解析.

【解析】

1)依据勾股定理即可得到AC的长;

2)取格点HG,连AHBC于点M,依据△ACH与△AGH全等,即可得到 的平分线,连DGAM于点P,利用三角形全等可得CP+DP的最小值等于线段DG的长.

1)由图可得,AC

故答案为:5

2)如图取格点HG,且满足

AHBC于点M,连DGAM于点P,连

CP+DP最小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线与x轴相交于点A(﹣30)、点B10),与y轴交于点C03),点D是抛物线上一动点,联结OD交线段AC于点E

1)求这条抛物线的解析式,并写出顶点坐标;

2)求∠ACB的正切值;

3)当AOEABC相似时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点E为矩形ABCDAD上一点,点P,点Q同时从点B出发,点P沿运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是,设PQ出发t秒时,的面积为,已知yt的函数关系的图象如图曲线OM为抛物线的一部分,则下列结论:直线NH的解析式为不可能与相似;时,秒.其中正确的结论个数是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线yax2+bx+ca≠0)的顶点为C(14),交x轴于AB两点,交y轴于点D,其中点B的坐标为(30)

1)求抛物线的解析式;

2)如图2,点P为直线BD上方抛物线上一点,若,请求出点P的坐标.

3)如图3M为线段AB上的一点,过点MMNBD,交线段AD于点N,连接MD,若DNM∽△BMD,请求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为123)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为456789),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为100的微生物会出现在( )

A.3B.4C.5D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点IRtABC的内心,∠C90°AC3BC4,将∠ACB平移使其顶点CI重合,两边分别交ABDE,则IDE的周长为(  )

A.3B.4C.5D.7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校在一次大课间活动中,采用了四种活动形式:A:跑步;B:跳绳;C:做操;D:游戏,全校学生都选择了一种形式参与活动,小明对同学们选择的活动形式进行了随机抽样调查,并绘制了不完整的两幅统计图(如图):

1)本次共调查了多少名学生?

2)跳绳B对应扇形的圆心角为多少度?

3)学校在每班ABCD四种活动形式中,随机抽取两种开展活动,求每班抽取的两种形式恰好是做操跳绳的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB90°,∠B30°,以点O为圆心,OA为半径作弧交AB于点C,交OB于点D,若OA4,则阴影部分的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(PG不与正方形顶点重合,且在CD的同侧),PD=PGDFPG于点H,交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF

1)如图1,当点P与点G分别在线段BC与线段AD上时.

①求证:DF=PG

②若AB=3PC=1,求四边形PEFD 的面积;

2)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,请猜想四边形PEFD 是怎样的特殊四边形,并证明你的猜想.

查看答案和解析>>

同步练习册答案