【题目】如图,在平面直角坐标系中,正比例函数y=3x与反比例函数y=的图象交于A,B两点,点A的横坐标为2,AC⊥x轴,垂足为C,连接BC.
(1)求反比例函数的表达式;
(2)求△ABC的面积;
(3)若点P是反比例函数y=图象上的一点,△OPC与△ABC面积相等,请直接写出点P的坐标.
【答案】(1)y=;(2)S△ABC=12;(3)P点坐标为(1,12)或(﹣1,﹣12).
【解析】
(1)把A点横坐标代入正比例函数可求得A点坐标,代入反比例函数解析式可求得k,可求得反比例函数解析式;
(2)根据反比例函数的对称性得出点B的坐标,再利用三角形的面积公式解答即可;
(3)由条件可求得B、C的坐标,可先求得△ABC的面积,再结合△OPC与△ABC的面积相等求得P点坐标.
解:(1)把x=2代入y=3x中,得y=2×3=6,
∴点A坐标为(2,6),
∵点A在反比例函数y=的图象上,
∴k=2×6=12,
∴反比例函数的解析式为y=;
(2)∵AC⊥OC,
∴OC=2,
∵A、B关于原点对称,
∴B点坐标为(﹣2,﹣6),
∴B到OC的距离为6,
∴S△ABC=2S△ACO=2××2×6=12,
(3)∵S△ABC=12,
∴S△OPC=12,
设P点坐标为(x,),则P到OC的距离为||,
∴×||×2=12,解得x=1或﹣1,
∴P点坐标为(1,12)或(﹣1,﹣12).
科目:初中数学 来源: 题型:
【题目】如图,O是等边三角形ABC内一点,∠AOB=110°,∠BOC=m°,D是△ABC外一点,且△ADC≌△BOC,连接OD.当m为_____时,△AOD是等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,△ABC 是等腰直角三角形,BC=AB,A 点在 x 负半轴上,直角顶点 B 在 y 轴上,点 C 在 x 轴上方.
(1)如图1所示,若A的坐标是(﹣3,0),点 B的坐标是(0,1),求点 C 的坐标;
(2)如图2,过点 C 作 CD⊥y 轴于 D,请直接写出线段OA,OD,CD之间等量关系;
(3)如图3,若 x 轴恰好平分∠BAC,BC与 x 轴交于点 E,过点 C作 CF⊥x 轴于 F,问 CF 与 AE 有怎样的数量关系?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,3).
(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1点的坐标及sin∠B1A1C1的值;
(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出将△ABC放大后的△A2B2C2,并写出A2点的坐标;
(3)若点D(a,b)在线段AB上,直接写出经过(2)的变化后点D的对应点D2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,AP是⊙O的切线,点A为切点,BP与⊙O交于点C,点D是AP的中点,连结CD.
(1)求证:CD是⊙O的切线;
(2)若AB=2,∠P=30°,求阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明与同学们在数学动手实践操作活动中,将锐角为的直角三角板MPN的一个锐角顶点P与正方形ABCD的顶点A重合,正方形ABCD固定不动,然后将三角板绕着点A旋转,的两边分别与正方形的边BC、DC或其延长线相交于点E、F,连结EF.
(探究发现)
在三角板旋转过程中,当的两边分别与正方形的边CB、DC相交时,如图所示,请直接写出线段BE、DF、EF满足的数量关系:______.
(拓展思考)
在三角板旋转过程中,当的两边分别与正方形的边CB、DC的延长线相交时,如图所示,则线段BE、DF、EF又将满足怎样的数量关系:______,并证明你的结论;
(创新应用)
若正方形的边长为4,在三角板旋转过程中,当的一边恰好经过BC边的中点时,试求线段EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)一个不透明的盒中装有若干个除颜色外都相同的红球与黄球.在这个口袋中先放入2个白球,再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,记录颜色后放回盒中,再继续摸球,全班一共做了400次这样的摸球试验.如果知道摸出白球的频数是40,你能估计在未放入白球前,袋中原来共有多少个小球吗?
(2)提出问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?
活动操作:先从盒中摸出8个球,画上记号放回盒中.再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,记录颜色、是否有记号,放回盒中,再继续摸球、记录、放回袋中.
统计结果:摸球试验活动一共做了50次,统计结果如下表:
球的类别 | 无记号 | 有记号 | ||
红色 | 黄色 | 红色 | 黄色 | |
摸到的次数 | 18 | 28 | 2 | 2 |
由上述的摸球试验推算:
①盒中红球、黄球各占总球数的百分比分别是多少?
②盒中有红球多少个?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个木制的棱长为3的正方体的表面涂上颜色,将它的棱三等分,然后从等分点把正方体锯开,得到27个棱长为l的小正方体,将这些小正方体充分混合后,装入口袋,从这个口袋中任意取出一个小正方体,则这个小正方体的表面恰好涂有两面颜色的概率是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com