【题目】如图,A(2,0),D(6,4),将线段AD平移得到BC,B(0,﹣6),延长BC交x轴于点E.
(1)则△ABC的面积是 ;
(2)Q为x轴上一动点,当△ABC与△ADQ的面积相等时,试求点Q的坐标.
(3)若存在一点M(m,6)且△ADM的面积不小于△ABC的面积,求m的取值范围.
【答案】(1)△ABC的面积为8;(2)当△ABC与△ADQ的面积相等时,点Q的坐标为(﹣2,0)或(6,0);(3)△ADM的面积不小于△ABC的面积,m的取值范围为m≤4或m≥12.
【解析】
(1)连接AC作CH⊥AE于H,根据平移的性质求出点C的坐标,根据梯形的面积公式、三角形的面积公式计算即可;
(2)设点Q的坐标为(x,0),根据题意列出方程,解方程即可;
(3)直线BC的解析式为y=x-6,直线y=x-6交直线y=6于M′(12,6),此时△ADM′的面积=8,由A(2,0),D(6,4),推出直线AD的解析式为y=x-2,直线y=x-2交y轴于P(0,-2),在y轴上取一点N,使得PN=PB,则N(0,2),作NM∥AD,直线MN的解析式为y=x+2,直线MN交直线y=6于M(4,6),此时△ADM的面积=8,由此几何图形即可解决问题.
(1)如图1中,连接AC作CH⊥AE于H,
∵点A的坐标为(2,0),点B的坐标为(0,﹣6),
∴点A先向左移动2个单位,再向下移动6个单位得到点B,
∵点D的坐标为(6,4),
∴点C的坐标为(4,﹣2),
∴△ABC的面积=×(2+6)×4﹣×2×6﹣×2×2=8,
故答案为:8;
(2)设点Q的坐标为(x,0)
由题意得,×|x﹣2|×4=8,
解得,x=﹣2或6,
∴当△ABC与△ADQ的面积相等时,点Q的坐标为(﹣2,0)或(6,0);
(3)如图2中,
∵B(0,﹣6),C(4,﹣2),
∴直线BC的解析式为y=x﹣6,直线y=x﹣6交直线y=6于M′(12,6),此时△ADM′的面积=8,
∵A(2,0),D(6,4),
∴直线AD的解析式为y=x﹣2,直线y=x﹣2交y轴于P(0,﹣2),
在y轴上取一点N,使得PN=PB,则N(0,2),作NM∥AD,
直线MN的解析式为y=x+2,直线MN交直线y=6于M(4,6),此时△ADM的面积=8,
∴△ADM的面积不小于△ABC的面积,m的取值范围为m≤4或m≥12.
科目:初中数学 来源: 题型:
【题目】有这样一个问题:探究同一平面直角坐标系中系数互为倒数的正、反比例函数y= x与y= (k≠0)的图象性质.
小明根据学习函数的经验,对函数y= x与y= ,当k>0时的图象性质进行了探究.
下面是小明的探究过程:
(1)如图所示,设函数y= x与y= 图象的交点为A,B,已知A点的坐标为(﹣k,﹣1),则B点的坐标为;
(2)若点P为第一象限内双曲线上不同于点B的任意一点.
①设直线PA交x轴于点M,直线PB交x轴于点N.求证:PM=PN.
证明过程如下,设P(m, ),直线PA的解析式为y=ax+b(a≠0).
则 ,
解得
∴直线PA的解析式为
请你把上面的解答过程补充完整,并完成剩余的证明.
②当P点坐标为(1,k)(k≠1)时,判断△PAB的形状,并用k表示出△PAB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知函数y=ax2+bx+c 的图象如图所示,有以下四个结论:①abc=0,② ,③ ,④ ;其中正确的结论有( )
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题中,真命题有( )
①同旁内角互补;②互补的角是邻补角;③平方根、立方根是它本身的数是0和1;④和﹣|﹣2|互为相反数;⑤4<<5;⑥如果a∥b,a⊥c.那么b⊥c.
A. 0个B. 1个C. 2个D. 3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在和中, ,, .
(1)若三点在同一直线上,连接交于点,求证: .
(2)在第(1)问的条件下,求证: ;
(3)将绕点顺时针旋转得到图2,那么第(2)问中的结论是否依然成立?若成立,请证明你的结论:若不成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有一圆锥形粮堆,其侧面展开图是半径为6m的半圆,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程长为( )
A.3m
B. m
C. m
D.4m
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,反比例函数 的图象与一次函数y=x+b的图象交于点A(1,4)、点B(-4,n).
(1)求△OAB的面积;
(2)根据图象,直接写出不等式 的解集.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com