【题目】已知抛物线与轴交于,两点,顶点为,如果为直角三角形,则________.
【答案】
【解析】
抛物线y=ax2-x-1与x轴交于A,B两点,顶点为C,△ABC为直角三角形,根据对称性可知,△ABC必是等腰直角三角形,于是有与x轴两个交点之间的距离等于顶点到x轴距离的2倍,分别表示出这两个距离,列方程求解,检验得出答案.
解:∵抛物线y=ax2-x-1与x轴交于A,B两点,
∴b2-4ac>0,
即1+4a>0,也就是
∵抛物线y=ax2-x-1与x轴交点的横坐标为,顶点的纵坐标为,
∴AB的距离为|x1-x2|= ,顶点C到x轴距离CD为,
∵当△ABC为直角三角形,根据对称性可知它是一个等腰直角三角形,此时AB=2CD,
于是:
两边平方得:
整理得:16a2-8a-3=0
解得:
∵
∴
科目:初中数学 来源: 题型:
【题目】盒子中装有形状、大小完全相同的3个小球,球上分别标有数字-1,1,2,从中随机取出一个,其上的数字记为k,放回后再取一次,其上的数记为b,则函数y=kx+b是增函数的概率为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知点A(1,2),B(3,2),连接AB.若对于平面内一点P,线段AB上都存在点Q,使得PQ≤2,则称点P是线段AB的“影子”.
(1)在点C(0,1),D(2,),E(4,5)中,线段AB的”影子”是 .
(2)若点M(m,n)在直线y=-x+2上,且不是线段AB的“影子”,求m的取值范围.
(3)若直线y=x+b上存在线段AB的“影子”,求b的取值范围以及“影子”构成的区域面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】等腰△ABC的直角边AB=BC=10cm,点P、Q分别从A、C两点同时出发,均以1cm/秒的相同速度作直线运动,已知P沿射线AB运动,Q沿边BC的延长线运动,PQ与直线AC相交于点D.设P点运动时间为t,△PCQ的面积为S.
(1)求出S关于t的函数关系式;
(2)当点P运动几秒时,S△PCQ=S△ABC?
(3)作PE⊥AC于点E,当点P、Q运动时,线段DE的长度是否改变?证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示的正方形网格,△ABC的顶点在网格上,在建立平面直角坐标系后,点B的坐标是(-1,-1)
(1)把△ABC向左平移10格得到,画出;
(2)画出关于x轴对称的图形;
(3)把△ABC绕点C顺时针旋转90°后得到,画出,并写出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC的三个顶点的坐标分别为,,.
(1)点A关于y轴对称的点的坐标是 ;
(2)将△ABC绕坐标原点O顺时针旋转180°,画出图形,直接写出点B的对应点的坐标;
(3)请直接写出:以A,B,C为顶点的平行四边形的第四个顶点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.
问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.
(1)直接写出点D(m,n)所有的特征线;
(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;
(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com