精英家教网 > 初中数学 > 题目详情

【题目】问题发现:如图1,在△ABC中,∠C=90°,分别以AC、BC为边向外侧作正方形ACDE和正方形BCFG.

(1)△ABC与△DCF面积的关系是;(请在横线上填写“相等”或“不相等”)
(2)拓展探究:若∠C≠90°,(1)中的结论还成立吗?若成立,请结合图2给出证明;若不成立,请说明理由;

(3)解决问题:如图3,在四边形ABCD中,AC⊥BD,且AC与BD的和为10,分别以四边形ABCD的四条边为边向外侧作正方形ABFE、正方形BCHG、正方形CDJI、正方形DALK,运用(2)的结论,图中阴影部分的面积和是否有最大值?如果有,请求出最大值,如果没有,请说明理由.

【答案】
(1)相等
(2)解:成立.理由如下:

延长BC到点P,过点A作AP⊥BP于点P;过点D作DQ⊥FC于点Q.如图所示:

∴∠APC=∠DQC=90°.

∵四边形ACDE,BCFG均为正方形,

∴AC=CD,BC=CF,∠ACP+∠PCD=90°,∠DCQ+∠PCD=90°,

∴∠ACP=∠DCQ.

在△APC和△DQC中,

△APC≌△DQC(AAS),

∴AP=DQ.

又∵SABC= BCAP,SDFC= FCDQ,

∴SABC=SDFC


(3)解:图中阴影部分的面积和有最大值,理由如下:

由(2)得:SAEL=SABD,SBFG=SABC,SCIH=SCBD,SDLK=SDAC

∴阴影部分的面和S=SAEL+SBFG+SCIH+SDLK=2S四边形ABCD

设AC=x,则BD=10﹣x,

∵AC⊥BD,

∴S四边形ABCD= AC×BD= x(10﹣x)=﹣ x2+5x=﹣ (x﹣5)2+

∵﹣ <0,

∴S四边形ABCD有最大值,最大值为

∴图中阴影部分的面积和有最大值为25.


【解析】解:(1)相等;理由如下:

∵四边形ACDE和四边形BCFG是正方形,

∴AC=DC,BC=FC,∠ACD=∠BCF=90°,

∵∠ACB=90°,

∴∠DCF=90°=∠ACB;

在△ABC与△DFC中,

∴△ABC≌△DFC(AAS).

∴△ABC与△DFC的面积相等;

所以答案是:相等;

【考点精析】本题主要考查了二次函数的最值的相关知识点,需要掌握如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC三个顶点的坐标分别为A11),B42),C34),

1)画出△ABC关于y轴的对称图形△A1B1C1,并写出点B1的坐标;

2)在x轴上求作一点P,使△PAB的周长最小,并直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是规格为8×8的正方形网格,请在所给网格中按下列要求操作:

(1)在网格中建立平面直角坐标系,使A点坐标为(24)B点坐标为(42)

(2)在第二象限内的格点上画一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,则C点坐标是   

(3)求△ABCBC边上的高长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形纸片ABCD中,AB8,将纸片折叠,使顶点B落在边AD上的E点处,折痕的一端G点在边BC上.

(1)如图1,当折痕的另一端FAB边上且AE4时,求AF的长

(2)如图2,当折痕的另一端FAD边上且BG10时,

求证:EFEGAF的长.

(3)如图3,当折痕的另一端FAD边上,B点的对应点E在长方形内部,EAD的距离为2cm,且BG10时,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将直角三角形 ABC 沿 AB 方向平移 AD 的长度得到三角形DEF,已知BE=5 EF=8 CG=2,则图中阴影部分的面积为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】三角形ABC(记作△ABC)在8×8方格中,位置如图所示,A(-31),B(-24).

1)请你在方格中建立直角坐标系,并写出C点的坐标;

2)把△ABC向下平移1个单位长度,再向右平移2个单位长度,请你画出平移后的△A1B1C1,若△ABC内部一点P的坐标为(ab),则点P的对应点P1的坐标是

3)在x轴上存在一点D,使△DB1C1的面积等于3,求满足条件的点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中华人民共和国道路交通管理条例规定:小汽车在城市街道上行驶速度不得超过70 km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30 m,过了2 s,测得小汽车与车速检测仪间距离为50 m,这辆小汽车超速了吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,过点C作CE⊥DB交DB的延长线于点E,直线AB与CE相交于点F.

(1)求证:CF为⊙O的切线;
(2)填空:当∠CAB的度数为时,四边形ACFD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的.连接BE、CF相交于点D.

(1)求证:BE=CF.

(2)当四边形ACDE为菱形时,求BD的长.

查看答案和解析>>

同步练习册答案