精英家教网 > 初中数学 > 题目详情

【题目】如图,长方形纸片ABCD中,AB8,将纸片折叠,使顶点B落在边AD上的E点处,折痕的一端G点在边BC上.

(1)如图1,当折痕的另一端FAB边上且AE4时,求AF的长

(2)如图2,当折痕的另一端FAD边上且BG10时,

求证:EFEGAF的长.

(3)如图3,当折痕的另一端FAD边上,B点的对应点E在长方形内部,EAD的距离为2cm,且BG10时,求AF的长.

【答案】(1)AF3(2)①证明见解析;②AF6(3)AF

【解析】

1)根据翻折的性质可得BFEF,然后用AF表示出EF,在RtAEF中,利用勾股定理列出方程求解即可;

2)①根据翻折的性质可得∠BGF=∠EGF,再根据两直线平行,内错角相等可得∠BGF=∠EFG,从而得到∠EGF=∠EFG,再根据等角对等边证明即可;

②根据翻折的性质可得EGBGHEABFHAF,然后在RtEFH中,利用勾股定理列式计算即可得解;

3)设EHAD相交于点K,过点EMNCD分别交ADBCMN,然后求出EMEN,在RtENG中,利用勾股定理列式求出GN,再根据GENEKM相似,利用相似三角形对应边成比例列式求出EKKM,再求出KH,然后根据FKHEKM相似,利用相似三角形对应边成比例列式求解即可.

(1)∵纸片折叠后顶点B落在边AD上的E点处,

BFEF

AB8,∴EF8AF

RtAEF中,AE2+AF2EF2

42+AF2(8AF)2

解得AF3

(2)①∵纸片折叠后顶点B落在边AD上的E点处,

∴∠BGF=∠EGF

∵长方形纸片ABCD的边ADBC

∴∠BGF=∠EFG

∴∠EGF=∠EFG

EFEG

②∵纸片折叠后顶点B落在边AD上的E点处,

EGBG10HEAB8FHAF

EFEG10

RtEFH中,FH6

AFFH6

(3)如图3,设EHAD相交于点K,过点EMNCD分别交ADBCMN

EAD的距离为2cm

EM2EN826

RtENG中,GN8

∵∠GEN+KEM180°﹣∠GEH180°90°90°

∵∠GEN+NGE180°90°90°

∴∠KEM=∠NGE

又∵∠ENG=∠KME90°

∴△GEN∽△EKM

解得EK KM

KHEHEK8

∵∠FKH=∠EKM,∠H=∠EMK90°

∴△FKH∽△EKM

解得FH

AFFH

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】网络商店(简称网店)是近年来迅速兴起的一种电子商务形式,小明的网店销售红枣、小米两种商品的相关信息如下表:

商品

红枣

小米

规格

1kg/

2kg/

成本(元/袋)

40

38

售价(元/袋)

60

54

根据上表提供的信息,解答下列问题

1)已知今年前四个月,小明的网店销售上表中规格的红枣和小米共2000kg,获得利润2.8万元,求这前四个月小明的网店销售这种规格的红枣和小米各多少袋?

2)根据之前的销售情况,估计今年5月到12月这后八个月,小明的网店还能销售同规格的红枣和小米共4000kg,其中,红枣的销售量不低于1200kg.假设这后八个月,销售红枣xkg),销售红枣和小米获得的总利润为y(元),求出yx之间的函数关系式,并求出这后八个月,小明的网店销售这种规格的红枣和小米至少获得总利润多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,点O是边AC上一个动点,过O作直线MNBC.设MN交ACB的平分线于点E,交ACB的外角平分线于点F.

(1)求证:OE=OF;

(2)若CE=12,CF=5,求OC的长;

(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道对于一个图形,通过不同的方法计算图形的面积时,可以得到一个数学等式.例如由图1可以得到.请回答下列问题:

1)写出图2中所表示的数学等式是

2)如图3,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有的式子表示)

3)通过上述的等量关系,我们可知: 当两个正数的和一定时,它们的差的绝对值越小,则积越 (填”“);当两个正数的积一定时,它们的差的绝对值越小,则和越 (填).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校计划在某商店购买秋季运动会的奖品,若买5个篮球和10个足球需花费1150元,若买9个篮球和6个足球需花费1170.

1)篮球和足球的单价各是多少元?

2)实际购买时,正逢该商店进行促销.所有体育用品都按原价的八折优惠出售,学校购买了若干个篮球和足球,恰好花费1760.请直接写出学校购买篮球和足球的个数各是多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校近期举办了一年一度的经典诵读比赛.某班级因节目需要,须购买AB两种道具.已知购买1A道具比购买1B道具多10元,购买2A道具和3B道具共需要45元.

1)购买一件A道具和一件B道具各需要多少元?

2)根据班级情况,需要这两种道具共60件,且购买两种道具的总费用不超过620元.

请问道具A最多购买多少件?

若其中A道具购买的件数不少于B道具购买件数,该班级共有几种方案?试写出所有方案,并求出最少费用为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题发现:如图1,在△ABC中,∠C=90°,分别以AC、BC为边向外侧作正方形ACDE和正方形BCFG.

(1)△ABC与△DCF面积的关系是;(请在横线上填写“相等”或“不相等”)
(2)拓展探究:若∠C≠90°,(1)中的结论还成立吗?若成立,请结合图2给出证明;若不成立,请说明理由;

(3)解决问题:如图3,在四边形ABCD中,AC⊥BD,且AC与BD的和为10,分别以四边形ABCD的四条边为边向外侧作正方形ABFE、正方形BCHG、正方形CDJI、正方形DALK,运用(2)的结论,图中阴影部分的面积和是否有最大值?如果有,请求出最大值,如果没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情境:在综合与实践课上,同学们以“已知三角形三边的长度,求三角形面积”为主题开展数学活动,小颖想到借助正方形网格解决问题.图1,图2都是8×8的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.

操作发现:小颖在图1中画出△ABC,其顶点ABC都是格点,同时构造正方形BDEF,使它的顶点都在格点上,且它的边DEEF分别经过点CA,她借助此图求出了△ABC的面积.

1)在图1中,小颖所画的△ABC的三边长分别是AB=__________,BC=__________,AC=__________;△ABC的面积为__________.

解决问题:(2)已知△ABC中,AB=BC=2AC=5,请你根据小颖的思路,在图2的正方形网格中画出△ABC,并计算△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是⊙O外一点,过点P作⊙O的切线PA,切点为A,连接PO,延长PO交⊙O于点B,若∠P=30°,PA=3 ,则弧AB的长为

查看答案和解析>>

同步练习册答案