精英家教网 > 初中数学 > 题目详情

【题目】已知:正方形ABCD中,AB=4,ECD边中点,FAD边中点,AEBDG,交BFH,连接DH.

(1)求证:BG=2DG;

(2)求AH:HG:GE的值;

(3)求的值.

【答案】(1)详见解析;(2)AH:HG:GE =6:4:5;(3).

【解析】

(1)利用平行线分线段成比例定理即可解决问题;
(2)分别求出AH、GH、GE即可解决问题;
(3)作DM⊥AEM.分别求出DH、BH即可;

1)证明:∵四边形ABCD是正方形,

∵AB∥CD,AB=CD,

∵ECD边中点,

,

∴BG=2DG.

(2)解:∵AB∥CD,AB=CD,

∵ECD边中点

,

Rt△ADE中,∵AD=4,DE=2,

AE=

∴EG=

同理可得BF=,

∵AB=AD,∠BAF=∠ADE,AF=DE,

∴△BAF≌△ADE,

∴∠ABF=∠DAE,

∵∠DAE+∠BAH=90°,

∴∠ABF+∠BAH=90°,

∴∠AHB=90°,

∴AE⊥BF,

,

∴AH=

∴HG=2,

∴AH:HG:GE= =6:4:5.

(3)作DM⊥AEM.

由(2)可知:DM=AH=

RtDME中,

∴EM==

∴HM=AE-AH-EM=2 - -=

RtDHM中,

∴DH= =

RtAHB中,

∵BH==

=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(问题情境)如图①,在△ABC中,若AB=10AC=6,求BC边上的中线AD的取值范围.

1)(问题解决)延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把ABAC2AD集中在△ABE中,利用三角形三边的关系即可判断出中线AD的取值范围是   

(反思感悟)解题时,条件中若出现中点中线字样,可以考虑构造以该中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同个三角形中,从而解决问题.

2)(尝试应用)如图②,△ABC中,∠BAC=90°ADBC边上的中线,试猜想线段ABACAD之间的数量关系,并说明理由.

3)(拓展延伸)如图③,△ABC中,∠BAC=90°DBC的中点,DMDNDMAB于点MDNAC于点N,连接MN.当BM=4MN=5AC=6时,请直接写出中线AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD为∠BAC的平分线,BMAD,垂足为M,AB=5,BM=2,AC=9,∠ABC与∠C的关系为(

A.ABC=2CB.∠ABC=CC.ABC=CD.ABC=3C

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我校有2000名学生,为了解全校学生的上学方式,我校数学兴趣小组在全校随机抽取了150名学生进行抽样调查。整理样本数据,得到下列图表:

1)若150名学生都在同一个年级抽取,这样的抽样是否合理?_______(填);

2)根据调查结果,估计全校2000名学生上学方式的情况:步行______人;骑车_____人;乘公共交通工具_______人; 乘私家车_____人;其它_______人,并绘制成条形统计图;

(3)数学兴趣小组结合调查获取的信息,向学校提出了一些建议。如:骑车上学的学生数约占全校的34%,建议学校合理安排自行车停车场地。请你结合上述统计的全过程,再提出一条合理化建议.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC为锐角三角形,ADBC边上的高,正方形EFMN的一边MN在边BC上,顶点E、F分别在AB、AC上,其中BC=24cm,高AD=12cm.

(1)求证:AEF∽△ABC:

(2)求正方形EFMN的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,点D在AB边上,DEBC,与边AC交于点E,连结BE.记△ADE,△BCE的面积分别为S1,S2,(  )

A. 若2ADAB,则3S1>2S2 B. 若2ADAB,则3S1<2S2

C. 若2ADAB,则3S1>2S2 D. 若2ADAB,则3S1<2S2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在梯形ABCD中,ABCD,D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.

(1)用含x的代数式表示线段CF的长;

(2)如果把CAE的周长记作CCAEBAF的周长记作CBAF,设=y,求y关于x的函数关系式,并写出它的定义域;

(3)当∠ABE的正切值是时,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线分别相切于点和点.点和点分别是上的动点,沿平移.的半径为.下列结论错误的是(

A. B. 的距离为

C. ,则相切 D. 相切,则

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为6的正方形ABCD中,点PAB上一动点,连接DBDPAEDPE

(1)如图①,若PAB的中点,则=    =   

(2)如图②,若时,证明:AC=4BF

(3)如图③,若PBA的延长线上,当=   时,

查看答案和解析>>

同步练习册答案